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ABSTRACT: Lithium (Li) metal anodes are attractive for high-energy-density batteries. Dead Li is inevitably generated during the
delithiation of deposited Li based on a conversion reaction, which severely depletes active Li and electrolyte and induces a short
lifespan. In this contribution, a successive conversion−deintercalation (CTD) delithiation mechanism is proposed by manipulating
the overpotential of the anode to restrain the generation of dead Li. The delithiation at initial cycles is solely carried out by a
conversion reaction of Li metal. When the overpotential of the anode increases over the delithiation potential of lithiated graphite
after cycling, a deintercalation reaction is consequently triggered to complete a whole CTD delithiation process, largely reducing the
formation of dead Li due to a highly reversible deintercalation reaction. Under practical conditions, the working batteries based on a
CTD delithiation mechanism maintain 210 cycles with a capacity retention of 80% in comparison to 110 cycles of a bare Li anode.
Moreover, a 1 Ah pouch cell with a CTD delithiation mechanism operates for 150 cycles. The work ingeniously restrains the
generation of dead Li by manipulating the delithiation mechanisms of the anode and contributes to a fresh concept for the design of
practical composite Li anodes.

■ INTRODUCTION
Formidable environmental challenges, such as the massive
emission of greenhouse gases, appeal for the utilization of
renewable but intermittent energy sources based on solar,
wind, and so on.1 Consequently, a high-energy-density, low-
cost, and long-cycling secondary battery to store intermittent
energy sources for subsequent stable utilization, represented by
lithium (Li)-ion batteries (LIBs), is gaining global witnesses
and ever-increasing attention.2−5 However, the specific energy
of LIBs is approaching the theoretical limit (<350 Wh kg−1)
owing to the intercalation battery chemistry.6

Graphite based on an intercalation mechanism is widely
accepted as an anode material for practical LIBs because the
specific intercalation/deintercalation working mechanism of
graphite minimizes the loss of active Li sources during the
repeated cycles and significantly improves the cycle life.7,8

However, the inferior theoretical specific capacity of the
graphite anode (372 mAh g−1) largely limits its further
applications in terms of increasing energy density.9 Exploring

advanced anode materials with a high specific capacity based
on a new working mechanism to replace graphite in routine
LIBs is a primary strategy for achieving a battery with a higher
energy density.10

Among various anode materials, Li metal based on a
conversion mechanism (Li = Li+ + e−) renders an ultrahigh
theoretical specific capacity of 3860 mAh g−1 and low
reduction potential (−3.040 V vs standard hydrogen
electrode), which has been considered as an ideal anode
material for batteries.11−13 The Li metal anode achieves the
reversible storage/release of Li ions through a conversion
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reaction. However, a nonuniform Li stripping is hardly
circumvented.14,15 Partially active Li inevitably loses electronic
contact with conductive networks due to the nonuniform
stripping process, forming electrically isolated Li debris
(usually named dead Li). The dead Li cannot be utilized as
active materials during subsequent cycles, reducing the
utilization efficiency of Li metal and thus inducing a short
lifespan of a working battery,16 especially under practical
conditions including limited Li (<10 mAh cm−2) and a low
negative/positive capacity (N/P) ratio (<3).17−19 Therefore,
restraining the generation of dead Li is essential for the
practical applications of a Li metal anode. Presently,
tremendous efforts have been devoted to regulating the
behaviors of Li plating/stripping based on a conversion
reaction, such as electrolyte design,20−24 artificial protective
layers,25,26 and 3D hosts.27−31 The intrinsic nonuniform
stripping of active Li stemmed from only the conversion
reaction inevitably leads to the formation and accumulation of
dead Li. Consequently, a new working mechanism is
imperative to overcome the drawbacks of a mere conversion
mechanism for the high utilization of a Li metal anode.
The increasing overpotential of Li stripping based on a

conversion reaction during cycles inspires an ingenious
working mechanism. The accumulation of dead Li on bulk
Li limits the transport of Li ions and increases the
overpotential of Li stripping continuously. The increase of
overpotential provides an opportunity to switch the
delithiation mechanism by introducing another material to
finish the whole delithiation process, constructing a composite
anode. The introduced additional material should possess a
similar delithiation potential and a highly reversible storage/
release mechanism of Li ions in order to achieve the switching
of the delithiation mechanism.32−34 Graphite based on the
intercalation mechanism has a similar delithiation potential
(0.1 V, vs Li/Li+) to Li metal and a much higher utilization
efficiency (>99.96%) presently.35,36 In addition, various types
of graphite can be chosen with sufficient technology maturity.
In this contribution, a successive conversion−deintercalation

(CTD) delithiation mechanism is demonstrated to construct a
practical Li metal−graphite (Li/C) composite anode. The
conversion mechanism of Li metal works at initial cycles
because the delithiation overpotential just exceeds the
stripping potential of Li metal (0 V, vs Li/Li+) (Figure 1a).
However, the delithiation overpotential overlapped on the
anode gradually increases over the deintercalation potential of
lithiated graphite with the accumulation of dead Li (Figure
1b). At this stage, Li ions simultaneously delithiate from
lithiated graphite and Li metal. The delithiation mechanism is
triggered from a single conversion mechanism to the CTD
delithiation mechanism, and the CTD delithiation mechanism
continuously works during subsequent cycles since graphite is
rapidly replenished by Li ions. The highly reversible
deintercalation mechanism of lithiated graphite affords no
generation of dead Li and thus reduces the accumulation of
dead Li. Under practical conditions, the full cell with the CTD
delithiation mechanism maintains 210 cycles with a capacity
retention of 80% in comparison to a bare Li anode of 110
cycles. Moreover, a 1 Ah pouch cell with a Li/C composite
anode performs 150 cycles with a small polarization.

■ RESULTS AND DISCUSSION
The achievement of a successive CTD delithiation mechanism
is based on two key prerequisites. First, the delithiation

overpotential accumulated on the anode during cycles should
be larger than the deintercalation potential of lithiated
graphite, which is generally considered to be 0.1 V (vs Li/
Li+).37,38 Second, the intercalation rate of Li ions to graphite
should be no less than the delithiation rate of Li ions from the
whole anode to ensure the deintercalation mechanism
continuously contributes to the capacity throughout the
delithiation process. Accordingly, a Li/C composite anode
with a bilayer structure was designed (Figures S1−S4).
A three-electrode test was implemented to accurately

monitor the overpotential evolution of the Li/C composite
anode during practical cycles (Figure S5). The three-electrode
setup employs a Li@Cu as the reference electrode as
reported.39 The potential of the Li/C composite anode is
less than 20 mV (vs Li/Li+) at the third cycle and increases to
0.1 V (vs Li/Li+) after 15 cycles (Figure 2a). In contrast, the
potential evolution of graphite changes little during cycling,
and the initial deintercalation potential is maintained at 0.1 V
(vs Li/Li+). The two potential profiles have an obvious
crossover after the 15th cycle, which implies the possibility of
Li ions deintercalating from lithiated graphite. The average
overpotential of a composite anode is illustrated in Figure 2b.
The overpotential of a Li/C composite anode is gradually
elevated and exceeds the deintercalation potential of lithiated
graphite at the 15th cycle. Therefore, the deintercalation
mechanism is triggered to compensate for a single conversion
mechanism, achieving the successive CTD delithiation
mechanism as illustrated in Figure 1b. In addition, the ratio
of overpotential on the anode over 0.1 V (vs Li/Li+) at each
cycle approaches 100% after 15 cycles (Figure 2c), and thus
the CTD delithiation mechanism can dominate during the
continuous delithiation process.
In order to directly confirm that Li ions in lithiated graphite

can deintercalate during repeated cycles, the cycled electrode
was investigated by X-ray diffraction (XRD) and time-of-flight
secondary ion mass spectrometry (TOF-SIMS).40 A specific
circular electrode comprising a semicircular Li metal and a
semicircular graphite electrode was designed as a working
electrode. With this specific structure, the diffusion of Li ions
from Li metal to graphite was significantly blocked due to the

Figure 1. Schematic diagram of the delithiation mechanism of the
composite anode (a) at initial cycles and (b) after long cycles.
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limited contact area compared with the vertical bilayer
structure (Figure 3a).
Bare Li was employed as a counter electrode, and the testing

cell was cycled at a current density of 1.0 mA cm−2 and an areal
capacity of 3.0 mAh cm−2. The graphite anode is intercalated
by Li ions to form LiC6 in the first plating process, and the
voltage during the process of delithiation is less than 0.1 V at
the second cycle since Li ions are preferentially stripped from

the semicircular Li metal due to the low potential (Figure
3a,b). The sole signal of LiC6 demonstrates that Li ions in LiC6
cannot be employed during the initial cycles (Figure 3c).
When the dead Li accumulates on the surface of Li metal after
cycling, the voltage is elevated over 0.1 V. The signal of LiC12
emerges at the 15th cycle, and the ratio of peak area of LiC6
and LiC12 reduces to 0.58:1 from 0.83:1 during the process of
delithiation, confirming that Li ions can deintercalate from the
semicircular lithiated graphite anode. The distribution of Li
ions in the bulk semicircular graphite electrode after 15 cycles
was investigated by TOF-SIMS (Figure S6). The position of
graphite, such as part 1 and 2, is confirmed by the mapping of
C− (Figure 3d). The intensities of Li ions in part 1 and 2 have
an obvious distinction, which demonstrates that Li ions in part
2 have deintercalated during the delithiation process, and the
results agree well with the XRD analysis (Figure 3e).41 In
addition, when Li ions deintercalate from lithiated graphite,
partial deposited Li metal remains on the surface of graphite
according to the mapping of Li2

−. This result further elucidates
that the delithiation mechanism is composed of the
deintercalation and conversion mechanism rather than being
simply determined by the conversion mechanism (Figure 3f).
Li ions in graphite should be quickly replenished from bulk

Li metal after deintercalation in order to achieve the CTD
delithiation mechanism working throughout the delithiation
process. The intercalation of Li ions to graphite to form LiC6
during the delithiation process results from two patterns: solid
diffusion and an electrochemical process (Figure 4a). One
pattern is the solid diffusion from the direct contact between Li
metal and graphite. The solid diffusion coefficient is estimated
to be 0.2 × 10−8 cm2 s−1, which is sluggish at room
temperature and cannot replenish Li ions as soon as possible.42

Accordingly, the signal of bare graphite remains strong when

Figure 2. (a) Delithiation potential of the composite anode measured
by a three-electrode test. (b) Profile of average overpotential with the
cycle number in the three-electrode test. The average overpotential is
defined as the arithmetic mean of the overpotential at different
delithiation capacities each cycle. (c) Relationship between the ratio
of potential over 0.1 V and the cycle number in the three-electrode
test.

Figure 3. (a) Schematic diagram of the working state of a specific cell
at the pristine state (left panel), initial cycles (middle panel), and after
long cycles (right panel). (b) Voltage−capacity curves of the above
cell at the 2nd and 15th cycle. (c) XRD patterns of the semicircular
graphite electrode in Figure 3b. The blue and red lines represent the
2nd and 15th cycle, respectively. 1# and 2# represent the middle and
terminal state of charge, respectively. (d) C−, (e) Li+, and (f) Li2

−

mapping of the semicircular graphite electrode in Figure 3b after 15
cycles by TOF-SIMS after depth sputtering.

Figure 4. (a) Schematic diagram of the formation mechanism of LiC6.
(b) Color and (c) XRD patterns of the graphite electrode under
different rest durations. (d) Calculation of kinetic parameters for the
formation of LiC6 in the Li/C composite anode. (e) XRD patterns of
the composite anode at the 100th cycle in a full cell and the
corresponding voltage profiles. (f) Average CE and reversible Li at
different cycles with bare Li and a Li/C composite anode.
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the graphite electrode is pressed on a Li foil in a coin cell
without electrolyte after 3.0 h (Figures S7 and S8).
The other pattern is the intercalation of Li ions induced by

an electrochemical process. A primary cell forms due to the
discrepancy of the thermodynamic potential between graphite
and Li metal. Li ions in the electrolyte intercalate in graphite,
and the electron transfer relies on the solid−solid connection
between graphite and Li metal. An obvious color change can
be observed from the disassembled cells in the presence of
electrolyte, and the gold color of LiC6 can be visualized after
1.0 h (Figure 4b).43 The kinetics of the re-formation of LiC6
was investigated by XRD under different shelving durations in
coin cells.44 From the XRD patterns, only the signature of
graphite can be observed in the pristine Li/C composite anode.
The peak of LiC24 appears after 0.2 h, and LiC12 becomes the
main component after 0.5 h. The peak of graphite disappears
after 1.0 h. There is only a LiC6 peak in the XRD pattern of the
graphite electrode after 1.5 h (Figure 4c). The concentration of
Li ion in lithiated graphite was calculated according to the area
of the peak in the XRD patterns, assuming the concentration of
Li ions in LiC6 is 100% (Figure 4d). It is found that the
concentration of Li ions in lithiated graphite has a linear
relationship with the shelving time. Therefore, the Li-ion
intercalating reaction in graphite can be fitted with the first-
order reaction. The apparent kinetic parameter k is equated to
0.62 h−1, indicating that graphite can be fully intercalated by Li
ions to form LiC6 within 1.6 h. In general, the rate of Li-ion
stripping is determined by the cycle rate, which is set to 0.4 C
(h−1) in this work. The results confirm that the intercalation
rate of Li ions to graphite is larger than the delithiation rate of
Li ions from the whole anode. This conclusion was verified in a
full cell pairing with a Li/C composite anode and
LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode. There is a LiC6
peak during the process of charge and discharge at 0.4 C
after 100 cycles, which demonstrates that the Li ions in
graphite are quickly replenished to re-form LiC6 after the
deintercalation from lithiated graphite (Figure 4e).
At this stage, the two key prerequisites to achieve a

successive CTD delithiation mechanism are solidly confirmed.
The overpotential of Li stripping gradually increases during
cycles and can exceed the deintercalation potential of lithiated
graphite. Thus, the deintercalation mechanism will be triggered
to implement the whole delithiation process in addition to the
conversion mechanism, constructing a CTD delithiation
mechanism. The quick intercalation of Li ions to graphite
from bulk Li metal based on an electrochemical process
ensures the continued working of the CTD delithiation
mechanism. It is worth noting that the time when a CTD
delithiation mechanism is triggered is impacted by the
structure of the Li/C composite anode and cycle conditions,
such as current density.
Benefiting from the deintercalation mechanism of lithiated

graphite, which affords no generation of dead Li, the
accumulation of dead Li on the Li/C composite anode is
significantly reduced. The average Coulombic efficiency (CE)
of the half-cell with bare Li is 97.1%, which is similar to 97.5%
of the cell with a Li/C composite anode in the initial 5 cycles
(Figure 4f). The difference of the irreversible Li is 0.12 mAh
cm−2, indicating that the utilization efficiency of Li ions is
similar in the cell with different anodes and confirming that the
delithiation mechanisms are consistent at initial cycles.
However, the gap between the average CE and reversible Li
is gradually enlarged between the different anodes during

cycling. The average CE of bare Li is 95.4% and 96.4% after 20
and 40 cycles, respectively, which is less than 96.3% and 97.5%
of a Li/C composite anode. Meanwhile, the reversible Li
capacity is 6.78 mAh cm−2 in a Li/C composite anode, which
is higher than that in a bare Li anode of 5.53 mAh cm−2 after
40 cycles (Figures 4f and S9). The difference in reversible
capacity between the two anodes after 40 cycles is 10 times
larger than that after the fifth cycle. The improved average CE
and reversible Li stem from the involvement of the
deintercalation mechanism from lithiated graphite. The
deintercalation reaction in the CTD delithiation mechanism
effectively circumvents the generation of dead Li induced by
only a conversion reaction.
In addition, the volume expansion after repeated cycles is

ameliorated, which can be attributed to the decrease of dead Li
with the CTD delithiation mechanism. Scanning electron
microscopy (SEM) images reveal that a bare Li anode exhibits
a huge volume expansion of 58% after 40 cycles at 1.0 mA
cm−2 and 3.0 mAh cm−2. In contrast, the volume expansion is
only 14% for a Li/C composite anode under the same
conditions (Figure S10). There is considerable dead Li on the
surface of a bare Li anode, but less dead Li is observed on a Li/
C composite anode due to the decreased capacity via a
conversion mechanism (Figure S11). The bare Li | Li
symmetric cell exhibits a gradually increasing polarization to
500 mV within 200 h, while the Li/C | Li/C symmetric cell
maintains a much lower and more stable polarization of 250
mV after 350 h (Figure S12). The polarization voltage of a
bare Li anode after cycling sharply increases compared with
that of a Li/C composite electrode owing to the large volume
expansion and thick dead Li layer. The restrained volume
expansion and reduced polarization voltage of the Li/C
composite electrode demonstrate the positive effect of the
CTD delithiation mechanism in achieving superior electro-
chemical performance.
The full coin cells are assembled to probe the practical

potential of the Li/C composite anode with the CTD
delithiation mechanism. The capacity retention of the Li/C |
NCM523 battery maintains 80% for 210 cycles at 0.4 C
compared with 110 cycles of that with a bare Li anode (Figure
5a). Compared with a huge polarization voltage of 450 mV in a
full cell with a bare Li anode at the 110th cycle, the full cell
with a Li/C composite anode experiences a much smaller
polarization voltage of 340 mV according to dV/dQ analysis,
which is attributed to the reduced accumulation of dead Li
(Figures 5b and S13). Benefiting from the reduced
accumulation of dead Li, the fading tendency of capacity
significantly decreases in full cells. The decline rate of capacity
between adjacent cycles reaches 2.0% at the 100th cycle for a
bare Li anode but maintains 1.0% over 200 cycles for a Li/C
composite anode, which demonstrates the reduced consump-
tion of active Li metal based on the CTD delithiation
mechanism (Figure S14). The cycle performance of cells
improves with the increased thickness of graphite on Li metal
(Figure S15). Moreover, the Li/C composite anode was
further employed in pouch cells matching with a high areal
loading NCM523 cathode of 4.0 mAh cm−2. The 1 Ah pouch
cell performs 150 cycles at 0.1 C with a small polarization,
indicating the practical potential of the CTD delithiation
mechanism (Figure 5c and d). The specific capacity of the
composite anode in this work is 1500 mAh g−1 (Figure S16).
The specific capacity of the composite anode can be adjusted
by changing the mass fraction of Li metal (Figure 5e). The
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specific energy of the pouch cell is calculated based on the
parameters in previous work.45,46 With the Li/C composite
anode and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode, the
specific energy of the pouch cell can approach 400 Wh kg−1

(Figure 5f). In addition to the bare Li metal anode, the Li/C
composite anode with a CTD delithiation mechanism provides
a promising strategy to construct a practical high-energy-
density Li metal battery with a long lifespan.

■ CONCLUSION
In conclusion, a successive conversion−deintercalation deli-
thiation mechanism was demonstrated to construct a practical
Li metal−graphite composite anode. A conversion mechanism
of Li metal works due to the overpotential of less than 0.1 V
(vs Li/Li+) in the initial cycles. A deintercalation reaction of
lithiated graphite will be consequently involved to complete a
whole delithiation process when the overpotential of the anode
exceeds the deintercalation potential of lithiated graphite due
to the accumulation of dead Li. The deintercalation
mechanism can continuously contribute to the capacity during
the delithiation process since Li ions are rapidly replenished to
graphite. No obvious dead Li is generated through a
deintercalation mechanism, and thus the accumulation of

dead Li is reduced during subsequent cycles. The full cell with
a Li/C composite anode based on the CTD delithiation
mechanism maintains 210 cycles with a capacity retention of
80% in comparison to a bare Li anode of 110 cycles under
practical conditions. Moreover, a 1 Ah pouch cell performs 150
cycles, confirming the practical application potential of the
CTD delithiation mechanism. This work demonstrates a fresh
delithiation mechanism based on the deep insight into the
overpotential evolution of a Li metal anode and affords a
promising design of practical composite anodes for long-
cycling high-energy-density rechargeable batteries.
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