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Almost all evidence for the oldest traces of life on Earth rely on particles of graphitic carbon preserved
in rocks of sedimentary protolith. Yet, the source of carbon in such ancient graphite is debated, as it
could possibly be non-biological and/or non-indigenous in origin. Here we describe the co-occurrence of
poorly crystalline and crystalline varieties of graphitic carbon with apatite in ten different and variably
metamorphosed banded iron formations (BIF) ranging in age from 1,800 to >3,800 Myr. In Neoarchean
to Palaeoproterozoic BIF subjected to low-grade metamorphism, 13C-depleted graphitic carbon occurs as
inclusions in apatite, and carbonate and arguably represents the remineralisation of syngenetic biomass.
In BIF subjected to high-grade metamorphism, '>C-depleted graphite co-occurs with poorly crystalline
graphite (PCG), as well as apatite, carbonate, pyrite, amphibole and greenalite. Retrograde minerals
such as greenalite, and veins cross-cutting magnetite layers contain PCG. Crystalline graphite can occur
with apatite and orthopyroxene, and sometimes it has PCG coatings. Crystalline graphite is interpreted
to represent the metamorphosed product of syngenetic organic carbon deposited in BIF, while poorly
crystalline graphite was precipitated from C-O-H fluids partially sourced from the syngenetic carbon,
along with fluid-deposited apatite and carbonate. The isotopic signature of the graphitic carbon and the
distribution of fluid-deposited graphite in highly metamorphosed BIF is consistent with carbon in the
fluids being derived from the thermal cracking of syngenetic biomass deposited in BIF, but, extraneous
sources of carbon cannot be ruled out as a source for PCG. The results here show that apatite + graphite
is a common mineral assemblage in metamorphosed BIF. The mode of formation of this assemblage is,
however, variable, which has important implications for the timing of life’s emergence on Earth.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

iments. This knowledge has been combined with observations of
isotopically-light carbon in graphite in association with apatite, to

The association of isotopically-light organic carbon and apatite
is a common feature of sediments incorporating biomass (Papineau
et al., 2016; She et al., 2014). Apatite [Cas(POg4)3(F, Cl, OH)] re-
quires phosphorus, which can be derived from the decomposition
of phosphorus-bearing biological organic matter (biomass) in sed-
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argue for a biological origin of graphite (Mojzsis et al., 1996) in
the ca. 3,830 million years old (Myr) Akilia quartz-pyroxene rock.
Additionally, the presence of apatite rosettes (Li et al., 2012) and
apatite with ferric acetate (Li et al,, 2011) have been used to pro-
pose the biological processing of phosphorus and organic carbon
in BIF. Alternatively, it has been suggested that graphite associated
with apatite in metamorphosed BIF may also be fluid-deposited
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(Lepland et al.,, 2011; Papineau et al., 2010a, 2011, 2010b), so
that non-biological and biological sources of organic carbon are
both possible. To assess how common associations of graphitic car-
bon and apatite are in BIF, as well as the origin of the carbon
in graphite, we document its mineral associations in ten different
samples of various ages and metamorphic grades. Selected samples
come from the Eoarchaean supracrustal terranes of Nuvvuagittuq,
Akilia, and Saglek, from the Neoarchean belts of Sandur, Temagami,
Anshan, and Wutai, as well as from the Paleoproterozoic Brockman,
Paakko, and Biwabik iron formations (Table 1; Fig. 1; Supplemen-
tary information).

2. Methods
2.1. Optical microscopy

Standard 30 pm thick, polished and doubly-polished thin sec-
tions were prepared with a final polishing step using Al;03 0.5 pm
powder for investigation using transmitted and reflected light mi-
croscopy. No immersion oil was used to map petrographic features
in thin section.

2.2. Micro-Raman spectroscopy

Micro-Raman microscopy was conducted on petrographic tar-
gets within the polished thin sections using a WiTec alpha 300
confocal Raman imaging microscope with a 532 nm wavelength
laser and operating at a power between 0.1 and 6 mW depend-
ing on the target. Raman spectra and hyperspectral scans were
performed at 1000X magnification with variable spatial resolu-
tions from 1 pm to 360 nm, and spectral resolutions of 4 cm~!
were achieved using a 600 lines/mm grating. Hyperspectral im-
ages were created for specific mineral phases using peak intensity
mapping for characteristic peaks of each individual mineral in a
scan. Average spectra were calculated by creating a mask on ho-
mogeneous pixels of individual phases and had their backgrounds
fitted to a polynomial function and subtracted. Large area scans
(>100 pm x 100 pm) were completed using the same process
outlined previously, with spatial resolutions no lower than 1 pm.
Peak parameters were calculated from a Lorenz function modelled
for each selected peak. Cosmic ray reduction was applied to all Ra-
man spectra. Raman spectra were collected at confocal depths of at
least 1 pm below the surface of the thin sections. Raman spectrum
parameters, such as peak positions, Full Width at Half Maximum
(FWHM), and areas under the curve were extracted from the best-
resolved Raman peaks, and modelled with Lorentz function on
background-subtracted spectra. To estimate maximum crystallisa-
tion temperatures of graphitic carbon from the Raman spectra, we
used the geothermometer of Beyssac et al. (2002), which is justi-
fied by the lower greenschist to granulite metamorphic grade of all
the studied banded iron formations.

2.3. Scanning electron and energy dispersive X-ray spectroscopy

Scanning electron microscopy (SEM) in back scattered electron
(BSE) and secondary electron (SE) imaging modes were used to
characterise the morphology and composition of selected targets,
which were also characterised by energy dispersive X-ray spec-
troscopy (EDS). Analyses were carried out in the Department of
Earth Sciences at University College London (UCL) using a JEOL
JSM-6480L SEM. Standard operating conditions for SEM imaging
and EDS analysis were a 15 kV accelerating voltage, working dis-
tance of 10 mm and an electron beam current of 1 nA. Samples
were always coated with a few nanometres of Au prior to analysis.
The analyses were calibrated against standards of natural silicates,
oxides and Specpure® metals, with the data corrected using a ZAF
program.

2.4. Stable isotope mass spectrometry

Analyses of bulk rock powders for graphitic carbon were con-
ducted in the Bloomsbury Environmental Isotope Facility at UCL
with a Thermo-Finnigan Flash 1112 EA connected to a Thermo
Delta V Isotope Ratio Mass Spectrometer via a Conflo IV gas distri-
bution system. Sample preparation and analytical details follow a
previously devised protocol (Dodd et al., 2018). A suite of standard
materials that span a range of §'3C values from —26%o to —6%,
was analysed within each run. Each standard was analysed mul-
tiple times through the run to ensure reproducibility. The results
were calibrated to the Vienna Pee Dee Belemnite (VPDB) scale with
a reproducibility better than 0.2%o (10; n = 19). Empty muffled
silver capsules were run with and without HCl added to test for
contamination prior to analysis. No carbon was detected in these
procedural blank silver capsules. Analyses of bulk rock powders for
carbonate were conducted in the Cardiff School of Earth Sciences
with a Thermo Finnigan Delta V Advantage mass spectrometer con-
nected to a Gas Bench II. Sample preparation and analytical details
follow a previously devised protocol (Dodd et al., 2018).

3. Results and discussion
3.1. Occurrences of graphitic carbon in highly metamorphosed BIF

Apatite in the amphibolite facies ca. 4,280-3,770 Myr Nuvvua-
gittuq silicate BIF (quartz + magnetite + Fe-silicates; Table 1;
Fig. 1) appears with fluid inclusions of CO, + CH4 + HO (Fig. 2)
within quartz grains, along grain boundaries and with retrograde
greenalite (Fig. 3a; Supplementary Table 1). In the Nuvvuagittuq
jasper BIF (quartz + haematite + magnetite), apatite occurs as
inclusions in calcite rosettes, chert + magnetite granules, and as
millimetre-size graphite-bearing euhedral laths (Dodd et al., 2017).
Notably for the Nuvvuagittuq silicate BIF, graphite co-occurs with
poorly crystalline graphite (PCG) as coatings on apatite, which
also hosts inclusions of magnetite, calcite and graphite (Fig. 3a-d).
Poorly crystalline graphite has more intense Raman D peaks than
G peaks, which yields D/G peak intensity ratios above 1, in con-
trast to crystalline graphite which has weak intensity D peaks
compared to G peaks, giving intensity ratios below 1 (Fig. 4; Sup-
plementary Fig. 1). These differences lead to estimates of crystalli-
sation temperatures for PCG between 60-200 °C lower than those
of graphite in the same sample (Fig. 4; Supplementary Table 2).
In the Nuvvuagittuq silicate BIF, PCG appears within phyllosilicate
masses of greenalite and minnesotaite, and occurs with accessory
minerals such as carbonate and sulfide that are present in between
coarse quartz crystals (Fig. 3e-g), which demonstrates a retrograde
origin. Furthermore, PCG occurs within orthopyroxene crystals and
coats calcite and retrograde hornblende inclusions (Fig. 3h-j; Sup-
plementary Table 1). In other instances, PCG and graphite co-exist
with calcite and magnetite inside orthopyroxene crystals (Fig. 5).
Similarly, in the ca. 3,920 Myr old Saglek-Hebron silicate BIF (Ta-
ble 1; Fig. 1), crystalline graphite appears inside apatite and as
coatings on apatite (Fig. 3j-1), demonstrating that this is a com-
mon mineral association among Eoarchean BIF.

The ca. 2,551 Myr old, amphibolite facies Anshan BIF (Table 1;
Fig. 1), also hosts inclusions of PCG associated with greenalite and
apatite along with graphite. Graphite is also present within pro-
grade grunerite crystals (Fig. 6a-b). Similarly, both graphite and
PCG have been found in association with apatite and greenalite in
carbonate, situated adjacent to magnetite-pyrite bands (Fig. 6¢c-d).
In the ca. 2,500 Myr, greenschist facies Wutai BIF (Table 1; Fig. 1),
apatite forms microscopic clusters within masses of ankerite
present in pyrite-rich layers, in which graphite co-occurs within
microns of PCG, apatite and feldspar (Fig. 6e-f). In the ca. 1,878
Myr hornfels-pyroxene facies Biwabik BIF (Table 1; Fig. 1), graphite
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Table 1

Summarised details of the BIF samples included in this study. See supplementary information for detailed review of the samples.

Banded iron Location Age Metamorphic Associated lithologies Mineralogy of iron formation
formation (Myr) facies
Saglek N58 23 53.13 3, 7803-3, 920  Amphibolite Mafic volcanics, pelitic rocks, Qtz-mag-pyx-apa
W63 6 41.85 carbonate rocks, conglomerate, chert,
ultramafic rocks
Akilia N63 55 40 W51 41 30 >3,830 Granulite Mafic amphibolite and ultramafic Qtz-pyx-hbl-sulphides-
rocks, leucogranite, cal-apa-gra
quartzofeldspathic orthogniess
Nuvvuagittuq PC0802 - N58 16 43.5 4,280-3,770 Amphibolite Amphibolite, orthogniess, chlorite Qtz-mag-pyx-gru-gre-apa-gra
W77 43 57.7 meta-volcanics, serpentinite, ultra-
PC0O810 - N58 18 07.4 mafics, quartz-biotite schist, fuschite
W77 43 51.2 silica formation, conglomerate
PC0814 - N58 17 12.3
W77 44 11.6
PC0825 - N58 17 08.7
W77 44 12.2
PC-014 - N58 17 50.22
W77 44 10.09
PC-075 - 58 17 33.4
W77 44 2.34
PC-091 N58 17 31.57
W77 44 6.44
Sandur N 15 06 19 Ca. 2,700 Greenschist Carbon shales, mafic and felsic Qtz-mag-sd-py-silicates-
W 76 34 50 volcanics, greywacke apa-gra
Temagami Sherman mine, Ontario Ca. 2,700 Greenschist Mafic volcanics and turbidites Qtz-mag-ank-mns-apa-gra
Anshan Drill core taken several Ca. 2,550 Amphibolite Metavolcanic amphibolite, Qtz-mag-gru-ank-gre-py-
kilometres south east of finegrained biotite gneiss, quartzite, apa-gra
Qidashan, Liaoning province phyllite and schists
Wutai - Puhsang mine, Shanxi Ca. 2,500 Greenschist Chlorite-actinolite schist, Qtz-mag-ank-py-chm-apa-gra
Baizhiyan fm. province intermediate-felsic volcanics
Dales Gorge DGH-1 drill core Ca. 2,500 Lower greenschist Black shale and chert Qtz-mag-sd-mns-stp-hem-
apa-gra
Padkko Drill core #344 - 1,920-2,000 Low amphibolite Dolomites-black shale, phyllite, Qtz-mag-py-gru-ab-gra
M - 52/3441[73/344 metadiabase, quartzite
Biwabik 47.68 N 91.88 W Ca. 1,880 Granulite Quartzite Qtz-pyx-mag-gru-gra

Mineral abbreviations: Qtz - quartz, mag - magnetite, py - pyrite, pyx - pyroxene, gru - grunerite, gra — graphite, apa - apatite, stp - stilpnomelane, hem - haematite, sd -
siderite, mns - minnesotaite, chm - chamosite, gre - greenalite, ank - ankerite, hbl - hornblende, cal - calcite, ab - albite

occurs with calcite within retrograde grunerite, as evidenced by
grunerite appearing as rims along the margins of orthopyroxene
(Fig. 6g-h). Similarly in the ca. 3,830 Myr old granulite facies Ak-
ilia quartz-pyroxene rock (Table 1; Fig. 1), graphite also occurs
within retrograde grunerite rims along the margins of orthopyrox-
ene crystals, occasionally associated with chalcopyrite (Papineau et
al,, 2010a) (Supplementary Fig. 2). In contrast, abundant graphite
is found in discrete layers of prograde grunerite, pyrite, feldspar,
and magnetite with apatite (Fig. 6h-j) in the ca. 2,000 Myr old,
lower amphibolite facies Pddkko BIF (Table 1; Fig. 1).

3.2. Occurrences of graphitic carbon in BIF metamorphosed to the
greenschist facies

Graphitic carbon was also mapped by micro-Raman in the
greenschist facies Dales Gorge, Temagami and Sandur BIF (Ta-
ble 1; Fig. 1). In the ca. 2,470 Myr Dales Gorge BIF (Table 1;
Fig. 1), apatite can form variably thick bands varying up to 600 pm
in thickness. These bands are associated with stilpnomelane or
minnesotaite and siderite/ankerite between magnetite layers. The
apatite contains numerous inclusions of microscopic haematite,
ankerite, graphitic carbon and pyrite (Fig. 7a-b). The graphitic
carbon tends to form discrete layers in the apatite and cluster
around ankerite inclusions within the apatite (Fig. 7b). Graphitic
carbon is preferentially preserved within the apatite, with minor
amounts in the surrounding quartz and ankerite (Fig. 7b). In the
ca. 2,736 Myr Temagami BIF (Table 1; Fig. 1), there are magnetite
and minnesotaite bands interlayered with apatite bands, which
are nearly one millimetre thick, with inclusions of ankerite and
graphitic carbon (Fig. 7c-d). In contrast to the Dales Gorge BIF, the
Temagami graphitic carbon occurs predominately in ankerite inclu-
sions within millimetre thick apatite bands (Fig. 7d). The ca. 2,700

Myr Sandur BIF (Table 1; Fig. 1) preserves a range of graphitic car-
bon crystallinities (Fig. 7e-g; 4) including graphite and PCG, which
occur with apatite, siderite and pyrite. Hence, these observations
show for the first time that graphite and PCG co-occur in BIF, and
that they are also commonly associated with apatite and carbon-
ate.

3.3. Syngenicity of graphitic carbon

Graphitic carbon may be damaged during polishing of petro-
graphic thin sections, but can be distinguished by enlarged D peaks
in the Raman spectra (Beyssac et al., 2003). Therefore, it has been
verified through optical microscopy that all PCG targets are found
below the thin section surface and were not modified by polishing.
In addition, orientation of graphite sheets relative to the Raman
laser may induce changes in the relative intensities of the D peak
(Wang et al., 1989). Yet, graphite sheet orientation creates rela-
tively minor changes in D peak intensities and could not account
for the large difference in intensities of D to G peaks observed
here between PCG and graphite (Supplementary Fig. 1 and Sup-
plementary Table 2). The crystalline structural differences between
PCG and graphite are therefore a result of their mode of formation,
and the two types can be clearly distinguished by Raman crystal-
lographic characteristics (Supplementary Fig. 1).

The crystallisation temperature estimates for PCG are inter-
preted as retrograde crystallization temperatures of fluid-deposited
graphite, although we stress these may not be accurate, as the
graphite-Raman thermometer was calibrated against prograde
mineral assemblages (Beyssac et al., 2002) (Supplementary Ta-
ble 2). A better judge of precipitation temperatures can be dis-
cerned from the occurrence of PCG with retrograde minerals like
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G91-26B

PC0810

Fig. 1. Thin section scans of samples in this study. SG-278 - Saglek BIF. G91-26B - Akilia quartz-pyroxene rock. PC0814, PC0825 (red box = graphite vein), CP image of poorly
crystalline graphite and minnesotaite vein cutting magnetite bands. PC0802, PC0810 - Nuvvuagittuq BIF. ANS0911, ANS0917 - Anshan BIF. WUT1502 - Wautai BIF. BIFs-8 -
Sandur BIF. DGM-1-198’6 - Brockman, Dales Gorge BIF. TE0704 - Temagami. RPK344-156.4 - Pddkko. MF-62-88 - Mesabi BIF. PC-075 - Nuvvuagittuq serpentinite. All round
sections are 2.5 cm in diameter. Rectangle section are 2.5 cm wide. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
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minnesotaite (Fig. 3f-I; 6a-d, g), which has an upper stability limit
of 350°C (Klein, 2005), similar to the crystallisation temperatures
calculated for PCG (Supplementary Table 2). This indicates that
PCG was deposited from low temperature fluids during retrograde
metamorphism in the Nuvvuagittuq, Anshan and Wutai BIF, sup-
ported by PCG appearing within veins cross-cutting sedimentary
layers in the Nuvvuagittuq BIF (Fig. 1). However, retrograde min-
erals hosting graphitic carbon have not yet been found in the
Woutai BIF. In the case of the granulite facies Biwabik BIF and Ak-
ilia quartz-pyroxene rock, graphite is associated with retrograde
grunerite rims on prograde orthopyroxene crystals (Fig. 6g; Sup-
plementary Fig. 2), depicting high temperature retrogression with
carbonic fluids. However, the Dales Gorge, Temagami and Pddkko
BIF do not show evidence for retrogression, and preserve pri-
mary organo-mineral assemblages, indicative of metamorphosed,
decayed biomass, such as 3C-depleted kerogen inclusions in ap-
atite and '3C-depleted carbonate (Fig. 7a-d; Table 2). Crystalli-
sation temperature estimates for graphite in the Sandur BIF ex-
ceeds metamorphic temperatures experienced by the formation
(Supplementary Table 2), and therefore may be a result of non-
metamorphic processes, such as templated mineral growth along
quartz boundaries (Fig. 7g) (van Zuilen et al., 2012).

The retrograde phases in the Nuvvuagittuq, Anshan, Biwabik
and Akilia are hydrated phyllosilicates and double-chained inosil-
icates (Fig. 3g-j; 6d, g-h, Supplementary Fig. 2). This points to
cooling and hydration reactions as the precipitation mechanism
of PCG (Luque et al., 2014). This can happen during cooling of
C-0-H fluids and can lead to coinciding hydration of the host min-
erals and decreased carbon solubility, so that PCG precipitates (cf.
Equ. (1)). In amphibolite facies BIF, amphiboles such as grunerite
are prograde minerals, whereas in granulite facies BIF grunerite
rims on pyroxene are more likely retrograde after pyroxene (Klein,
2005). Greenalite and minnesotaite would not survive amphibolite
facies metamorphism and therefore they are also retrograde min-
erals (Klein, 2005).

CO5 + CHg4 — 2C + 2H,0 (1)

Significantly, the association of apatite with fluid inclusion trails
in the Nuvvuagittuq BIF (Fig. 2) shows that fluids contained CO,,
CHa, H20, H,S, POS~, Ca®*, Fe?* and Cu®* (Papineau et al., 2011),
as indicated by the occurrence of chalcopyrite, calcite, apatite, and
Fe?*-bearing silicates along with fluid inclusions (Fig. 1). In the Ak-
ilia quartz-pyroxene rock, metamorphic apatite has been reported
to contain carbonate, which could have been a source of carbon
in graphite (Nutman and Friend, 2006). Graphite coatings on ap-
atite in the Akilia quartz-pyroxene rock (Papineau et al., 2010a)
co-occur in fluid inclusion trails containing CO, + CH4 + H3O
(Lepland et al., 2011), as well as sulphides and carbonate (Sup-
plementary Fig. 2), which point to fluid-deposition from fluids
compositionally-similar to those in the Nuvvuagittuq BIF. An im-
portant observation in the Nuvvuagittuq BIF, is that minnesotaite
and greenalite are the dominant phyllosilicate minerals associated
with PCG, which suggests that the metamorphic fluids were largely
derived from within the BIF because these phases are common
in BIF. Should the metamorphic fluids have been sourced from
non-BIF lithologies, they would carry elevated concentrations of
elements atypical for BIF, such as Ti or Al Thus the absence of
Al-phyllosilicates with PCG is consistent with the fluids being de-
rived mainly from BIF elements (Fig. 3f-g) (Gaillard et al,, 2018).
The association of PCG and apatite can be explained by hydroxya-
patite and phyllosilicates co-precipitating from fluids. These min-
erals would consume H,O during precipitation reactions yielding
PCG and H;0 through Equation (1). This precipitation of apatite
is analogous to the dissolution and recrystallisation of graphite
and carbonate-bearing apatite from granulite facies pelitic rocks of
Cooma, South-East Australia (Nutman, 2007). Such processes can
result in the observed association of apatite and graphitic car-
bons during retrograde reactions. In general, carbonate appears
as microscopic crystals intimately associated with fluid-deposited
carbon, probably as a result of increasing CO, disassociation in
metamorphic fluids during cooling (Fig. 2; 3d, g, I; 6g).

3.4. Origins of poorly crystalline and crystalline graphitic carbon

PCG and graphite co-occur within micrometre distances in the
Nuvvuagittuq, Anshan, and Wutai BIF (Fig. 3b-d; 5b-h; 6a-f). From
the intimate association of these graphitic carbon phases, it can be
inferred that they bear the same source and were transported to-
gether by similar metamorphic fluids. This is supported by PCG
commonly found around, or coating, crystalline graphite in these
BIF (Fig. 3a-d; 5d-h; 6d, f). This implies that the PCG grew on
pre-existing crystalline graphite. Similar examples have been found
in Proterozoic gneiss and quartzite from the Iberian metamorphic
belt of Spain, where fluid-deposited graphite forms overgrowths on
syngenetic graphite in gneiss and quartzite (Crespo et al., 2004),
as well as in numerous other formations (Arita and Wada, 1990;
Satish-Kumar et al., 2011; Valley and O’Neil, 1981). In addition,
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multiple crystallinities of disordered organic carbon have been
found co-occurring in chert from the Apex Formation (Marshall
et al, 2012) in Western Australia, and with graphite in green-
schist and amphibolite grade pelitic rocks (Kribek et al., 2008;
Large et al., 1994). Varying crystallinity of graphitic carbon in
metamorphic terranes may be due to the preservation of fluid-
deposited graphite along with syngenetic graphite (Crespo et al.,
2004), or varying temperature and H, fugacity of C-O-H fluids
during deposition of graphite (Pasteris and Chou, 1998).

Graphite and PCG in the Nuvvuagittuq, Anshan and Wutai BIF,
therefore, have one of two possible mechanisms of formation:
1) the graphite was formed from metamorphism of organic mat-
ter deposited in the sedimentary rocks and PCG precipitated from
C-0-H fluids (Crespo et al., 2005), or 2) all graphitic carbon was
precipitated from C-O-H fluids, of varying temperature or Hy fu-
gacity, which precipitated carbon (Pasteris and Chou, 1998) with
varying crystallinities. In the Nuvvuagittuq BIF, PCG veins (Fig. 1)
contain only PCG, and not graphite, suggesting there was just
one generation of fluid-deposited graphite. Additionally, crystalline
graphite does not appear with retrograde minerals, which sug-
gests that only PCG was fluid-deposited. Low temperatures are
required for PCG precipitation from C-O-H, so that fluid-deposited
PCG is relatively uncommon in nature due to the high solu-
bility of carbon at low temperatures (Luque and Rodas, 1999;

Pasteris, 1999). The low fO, and high CH4 content of carbonic
fluids generated at low pressures and temperatures (French, 1966)
from the maturation of organic matter encourage precipitation of
disordered graphite, where it would otherwise be unstable in typ-
ically more oxidised crustal carbonic fluids (Pasteris, 1999). Low-
temperature carbonic fluids are close to graphite saturation and
precipitate graphite they move, rather than transporting carbon
long distances. This may be due to the low temperature of the
fluids, making them susceptible to abrupt changes in pressure-—
temperature (Pasteris, 1999). Much of this graphite may nucleate
on pre-existing graphite, thereby making carbon unavailable for
widespread deposition (Crespo et al., 2004; Pasteris, 1999).

The distances of carbon transport in the Nuvvuagittuq appear
to have ranged from a few microns to perhaps centimetres, as ev-
idenced by PCG within micron-sized veins cutting across thin sec-
tions (Fig. 1). This is in contrast to high temperature graphite de-
posits, which transfer carbon over long distances in the crust, from
10 s of metres to possibly kilometres (Luque et al., 2014). Since
there are no reported graphite veins cross-cutting the Nuvvuagit-
tuq belt, graphite was likely not widely mobile. The association
of crystalline graphite and PCG, together with the lack of widely
distributed graphite veins, (over 10 s of metres to kilometres) is
consistent with a localised source of carbon. Therefore, PCG in the
Nuvvuagittuq, Anshan and Wutai BIF (Fig. 3a-d; 5d-h; 6a-f) was



170 M.S. Dodd et al. / Earth and Planetary Science Letters 512 (2019) 163-174

= r b:"/\ ©
- Anshan && N

Poorly ] . ‘z‘ b‘é?og% © & 0%9 U 5 ’b@(\
crystalline - | Rl W7 o

* Greenalite -Anshan Kl

| Orthopyroxene Biwabik
] Quartz Wutai
-—A—"‘-\_n_}\

Apatite - Anshan

Ankerite - Wutai

i ;i Grunerite - Anshan

L

Magnetite - Anshan

Feldspar - Paakko

Chamosite - Wutai

500 1000 1500 2000 2500 3000 3500
Wavenumber cm?

' Yele
T E RN

Fig. 6. Graphitic carbon in strongly metamorphosed BIFs. a) PPL image of grunerite and magnetite layers in the Anshan BIF. b) Graphite filter map showing the localised
occurrences of PCG and graphite. ¢) PPL image of grunerite and pyrite layer in the Anshan BIF. d) Raman map of apatite with coatings of graphite, along with surrounding
PCG and greenalite. e) CP image of ankerite and pyrite layer in the Wutai BIF. f) Raman showing the close association of PCG and graphite and PCG with apatite. g) PPL
image of clinopyroxene exhibiting grunerite rims with inclusions of graphitic carbon in the Biwabik BIF. h) Raman spectra for this figure. i) PPL image of grunerite-magnetite
layer in the Pddkko BIF. j) Raman map showing the association of graphite with apatite and grunerite. Mineral abbreviations: Ank - ankerite, Gru - grunerite, Py — pyrite,
Chm - chamosite. Raman map colours: grey — orthopyroxene (Biwabik)/feldspar (Pddkko), orange - greenalite (Anshan)/chamosite (Wutai), brown - grunerite, blue - quartz,
turquoise - apatite, green - ankerite, yellow - magnetite, purple - poorly crystalline graphite, red - crystalline graphite. See Fig. 3 for graphite spectra.

379465 667 9651095 2092 2568 h 3306 3641
Minnesotaite - Temagami

. ﬁt Quartz — Dales Gorge

 Apatite — Dales Gorge

[ Ankerite - Temagami
Magnetite - Temagami T '
Pyrite - Sandur

+ + + + + + +
500 1000 1500 2000 gSOO 3000 3500
Wavenumber cm-

Fig. 7. Graphitic carbon and apatite in weakly metamorphosed BIFs. a) CP image of magnetite and apatite bands in the Dales Gorge BIF, box corresponds to b. b) Raman
map of graphitic carbon in apatite. c) CP image of apatite band with ankerite in the Temagami BIF, box corresponds to d. d) Raman map of apatite band with ankerite and
graphitic carbon inclusions (circled). e) CP image of siderite and magnetite band in the Sandur BIF, box corresponds to f. f) PPL image of inclusions in quartz. g) Raman map
of graphite and PCG associated with apatite and pyrite. h) Raman spectra for this figure. Raman map colours: grey - minnesotaite, orange - pyrite, blue - quartz, turquoise
- apatite, green - ankerite, yellow - magnetite, purple - poorly crystalline graphite, red - crystalline graphite. See Fig. 3 for graphite spectra.



M.S. Dodd et al. / Earth and Planetary Science Letters 512 (2019) 163-174 171

Table 2
Stable isotope compositions of OM and carbonate in bulk rock powders of BIFs in
this study.

Sample name TOC 813 Corg 813 Ccarp 8180¢ary
(%) (VPDB) (VPBD) (SMOW)
(%) (%) (%)
G91-26C Akilia® 0.01 —-175 —44 +14.0
PC0814 (NSB) 0.03 —28.1 bdl bdl
PC0825 (NSB) 0.05 —264 -70 +18.5
PC-075 (NSB) bdl bdl —49 +15.5
PC-014 (NSB) bdl bdl bdl bdl
PC-091 (NSB) bdl bdl —4.5 +16.5
BIFs-8 (Sandur) 0.21° —285 —9.5 +173
TE0704 (Temagami) 0.04 —278 —4.6 +15.7
ANS0911 (Anshan) 0.03 —22.0 —-73 +14.5
ANS0917 (Anshan) 0.03 —26.7 —8.2 +14.5
WUT1512 (Wutai) 0.05 —225 —34 +10.5
DGM-1-198-6 0.03 —25.2 —103 +19.9
(Dales Gorge)
MF-62-88
(Biwabik) 0.03 —28.4 bdl bdl
PK344-156.4 0.45 —19.6 —-3.7 +21.0
(Paikko)

4 Denotes data taken from Papineau et al. (2010b). bdl - below detection limit.
b Organic and acid insoluble mineral extract. Samples weighed between
30-60 mg for organic analyses.

likely partly sourced in-situ, and precipitated within centimetres
of the source, from low fO, and high CH4 carbonic fluids. The
occurrence of PCG on the rims of crystalline graphite in isolated
orthopyroxene crystals is unlikely to arise from infiltration of exter-
nal HyO + CO, + CHy fluids, without leaving nearby trails of PCG,
which are not seen in Raman or optical images (Fig. 5). This obser-
vation is consistent with localised H,O + CO, + CHy fluids being
partially sourced in-situ from syngenetic organics (now crystalline
graphite). Though it is not possible to fully exclude an external
source for some of the carbon in the C-O-H fluids, it is concluded
that PCG in the Nuvvuagittuq BIF precipitated from cooling carbon-
bearing fluids derived from devolatilisation reactions, which liber-
ated CO; and CH4 from pre-existing organic matter (now graphite)
and precipitated it as PCG. A detailed comparative assessment with
all known incidences of graphitic carbon with apatite in BIF (Sup-
plementary Table 3), shows that PCG in other BIF may also repre-
sent devolatilised and remobilised organic material. The origins of
this organic matter, however, need to be assessed on an individual
basis.

3.5. Sources of carbon in graphite and testing the null hypothesis

Discounting younger rocks rich in organic matter by their ab-
sence from the Nuvvuagittuq area, the source of carbon in carbon-
bearing fluids in the BIF has three possible origins: 1) mantle
or sub-lithospheric CO; and CHy, 2) decarbonation of carbonates
and 3) devolatilisation of syngenetic organic matter (Luque et al.,
2014). The graphitic carbon in the greenschist facies Brockman,
Temagami, Sandur and Wutai BIF have §'3Cgr, values of —25.2%,
—27.8%0, —28.5%0, and —22.5%0 respectively. While in the amphi-
bolite facies Pddkko, Nuvvuagittuq and Anshan BIF, 813Cgra values
are —19.6%0, —28.1%0 to —26.4%0, and —26.7 to —22.0%o respec-
tively. In the hornfels-pyroxene facies Biwabik and granulite facies
Akilia BIF, the bulk rock §'3Cgy, values are, —28.1%¢ and —17.5%,
respectively (Table 2). All these values fall within the average com-
position of sedimentary organic matter over the last 3,500 Myr
(Schidlowski, 2001), except the Akilia bulk 813Cgra values, yet in-
situ analyses on individual graphite coatings on apatite grains have
a very large range between —4 and —49%, (McKeegan et al., 2007;
Mojzsis et al., 1996; Papineau et al., 2010b), which is consistent
with a protracted metamorphic history. Decarbonation reactions
can be ruled out, as the §'3Ceyp, values for all the BIF are sig-

nificantly heavier (—4.4 and —9.1%c) than 8'3Cgy, values (Table 2)
(Papineau et al., 2011). Additionally, Rayleigh distillation effects
would only shift C isotopes toward heavier compositions (Luque
et al,, 2012) during precipitation of C from C-O-H fluids. Con-
versely, during retrograde reactions fluid compositions with CO,
> CH4, may shift C isotopes of precipitated graphite to lighter
values (Farquhar et al., 1999). However, under typical crustal con-
ditions, fluids are reducing and CH4 dominates (Eiler et al., 1997).
This may be especially true of BIF, which typically contain reduced
mineral assemblages such as magnetite, so that, CO, concentra-
tions are unlikely to have been greater than CHg4, ruling out a
retrograde reaction as the origin of light C isotope compositions.
Fluid-deposited graphite derived from C-0-H fluids of mantle ori-
gin are typically much heavier than —14%0 (Luque et al., 1998;
Pearson et al., 1994). Moreover, we argue that meteoritic organic
matter can be ruled out due to the absence of detrital or mete-
orite components in the BIF sediments, expected to be deposited
along with meteoritic organic matter.

The production of abiotic organic matter in hydrothermal vents
is known to produce isotopically light hydrocarbons, typically with
less than four carbon atoms (Charlou et al., 2010; McCollom, 2013;
McCollom and Seewald, 2007). The isotopic signature of these hy-
drocarbons are characteristically not lighter than —15 to —19%o
in natural vent sites (McDermott et al., 2015; Proskurowski et
al., 2008). Yet, experimental reduction of inorganic carbon com-
pounds such as CO, CO; and HCO3 has yielded CH4 with iso-
topic compositions reaching as low as —50%c (Horita and Berndt,
1999; McCollom and Seewald, 2007). If during metamorphism iso-
topically light CH4 was produced by reduction of CO; in the
Nuvvuagittuq or other BIF, CO, would also react with the CHy
produced in order to precipitate graphite (Equ. (1)). Therefore, the
bulk isotopic composition of graphitic carbon in the Nuvvuagittuq
BIF is equivalent to the original CO; reservoir of a closed system.
Bulk rock powders can be used to roughly estimate the isotopic
composition of crystalline graphite and PCG in the Nuvvuagit-
tuq BIF. For example, the Nuvvuagittuq jasper-carbonate BIF sam-
ples only contain crystalline graphite (PC0822, PC0844)(Dodd et
al,, 2017) and have §'3Corg values of —21.1 to —24.6%o, whereas
the Nuvvuagittuq silicate BIF samples contain predominately PCG
and have a similar range of §'3Corg values of —20.6 to —26.4%
(PC0825, Fig. 1) (Papineau et al., 2011). Further in-situ work is
needed to precisely determine their individual carbon isotopic
compositions. If these estimates for the isotopic compositions of
PCG and crystalline graphite are correct, their similar isotopic com-
position is an expected result from liberation of CO, and CH4 from
a common syngenetic source of organic matter, and precipitation
via equation (1) (Crespo et al, 2004). In other words, a signifi-
cant amount of retrograde PCG was likely sourced from syngenetic
organic matter, and this syngenetic organic matter now occurs as
crystalline graphite formed during prograde metamorphism.

To further test for possible non-biological sources of organic
matter (now preserved as crystalline graphite), we consider abi-
otic hydrocarbon synthesis in serpentinites from the Nuvvuagit-
tuq belt. Serpentinites from the Nuvvuagittuq belt occur in ul-
tramafic rocks, which are interpreted to be co-genetic with the
Ujaraaluk amphibolite (O’Neil et al., 2011). The composition of the
Ujaraaluk amphibolite, along with the association of anthophyllite-
cordierite Mg-rich rocks, is consistent with hydrothermal alteration
of oceanic crust (O'Neil et al., 2011), likely responsible for the ser-
pentinisation. Deposition of the BIF is believed to be associated
with this hydrothermal activity on the seafloor. Moreover, the BIF
is found between the layers of serpentinite in the belt (O’Neil et
al., 2011). Pentlandite [(Fe, Ni, Co)9Sg] (Supplementary Table 1)
is a common mineral in these serpentinites, and believed to be
an effective natural catalyst of Fischer-Tropsch reactions in natu-
ral settings (Horita and Berndt, 1999; McCollom, 2013). However,
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among twenty-five Raman scans over three samples, we found no
organic matter associated with these minerals, nor did we find
organic carbon associated with apatite and carbonate in the ser-
pentinite (Fig. 8). To corroborate these observations, results from
the analysis of bulk rock powders of the serpentinite showed no
detectable organic matter (Table 2).

The serpentinites contain all the necessary ingredients for or-
ganic synthesis, including suitable catalysts (pentlandite) and a
carbon source (carbonate), yet organic matter was not detected.
While the analyses of three serpentinite samples is not exhaus-
tive, as it currently stands these new observations suggest that
abiotic hydrocarbon production during serpentinisation in seafloor
systems was unlikely to be significant during deposition of the
Nuvvuagittuq BIF. Alternatively, abiotic organic matter may not be

retained in serpentinites. The restricted range of C isotopic com-
positions of graphitic carbon in BIF throughout the Precambrian
suggests a similar C-isotope fractionation process, which is likely
a biological one. We acknowledge that while modern hydrother-
mal vents produce abiotic organics with §'3C signatures higher
than that of the reported graphitic carbons, Archean hydrother-
mal systems may have synthesised organics with lower §'3C sig-
natures, as inferred by experiments (Horita and Berndt, 1999).
Finally, the possibility of some !'3C-depleted CO, or CHy4 infiltra-
tion into the rock during metamorphism cannot be fully excluded,
but coatings of PCG on crystalline graphite, as well as similar iso-
topic compositions between BIF samples (Papineau et al.,, 2011),
point to an in-situ, syngenetic, and sedimentary source of car-
bon.
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4. Implications and conclusions

The occurrence of '3C-depleted graphite associations with ap-
atite in one of Earth’s oldest BIF, and its use as a biosigna-
ture, has been a subject of controversy (Lepland et al., 2005;
McKeegan et al., 2007; Mojzsis et al., 1996; Nutman and Friend,
2006). Several studies failed to find apatite + graphite mineral
assemblages in the Akilia BIF, or presumed such associations to
be rare (Lepland et al., 2005; Nutman and Friend, 2006). Sub-
sequently it was found that about 25% of apatite grains were
associated with graphite (Papineau et al., 2010a). The documen-
tation of 10 different BIF, from the Eoarchaean to the Palaeo-
proterozoic, show the mineral association of apatite + graphite
to be commonplace in BIF across various metamorphic grades.
However, we did not find evidence for graphite inclusions in ap-
atite, as previous studies have claimed (McKeegan et al.,, 2007;
Mojzsis et al., 1996), with graphite frequently coating apatite.
Graphite particles which occur in the centre of apatite grains
(Fig. 3d) may be coatings in the line of sight (Papineau et al.,
2010a). Yet large apatite bands in the Dales gorge BIF appear to
have inclusions of kerogen (Fig. 7b), so graphite inclusions in ap-
atite remain possible.

Apatite and graphite mineral assemblages in BIF are viewed
here as having two possible origins. In greenschist facies BIF,
graphitic carbon is found in sedimentary bands of carbonate and
apatite. These likely represent the mineralised products of decayed
biological organic matter (Li et al., 2011), as observed in the Brock-
man, Temagami and Sandur BIF. These mineral associations persist
into the amphibolite facies, where graphite is associated with ap-
atite, in the Pdakko, Anshan, and Saglek BIF (Fig. 3j-1; 6d, j). Fur-
thermore, the occurrence of apatite and graphite from the 3,780 to
3,920 Myr Saglek BIF could provide support for previous interpre-
tations that graphite with 13C-depleted isotopic compositions from
the Saglek belt represents microbial remains (Tashiro et al., 2017).

In highly metamorphosed BIF, higher temperatures may lead
to cracking of kerogen, which produces significant quantities of
CHy4. The association of PCG with retrograde minerals points to
the fluid-deposition of apatite and PCG during retrograde meta-
morphism, a process that can proceed at the upper greenschist to
amphibolite facies, for instance in the Anshan, Biwabik, Akilia and
Nuvvuagittuq BIF (Supplementary Table 3). The fluid deposition of
apatite during metamorphism may be supported by other stud-
ies which found the rare-earth element patterns of apatite from
the Akilia and other Eoarchaean BIF to be consistent with a meta-
morphic origin (Lepland et al., 2002; Nutman and Friend, 2006).
While graphitic carbon associated with apatite is commonplace in
Eoarchaean to Palaeoproterozoic BIF, the possibility of their co-
precipitation during metamorphism means that the null hypothesis
for a biological source of carbon in graphite cannot be fully re-
jected. This is based on experiments that show that non-biological
C-isotope fractionation overlaps the biological range, and that car-
bon in C-0-H fluids may include several different sources. From
the detailed study of variably aged and metamorphosed BIFs, uni-
formitarianism suggests apatite + graphite biosignatures in Earth’s
oldest rocks are ambiguous indicators of life, unless they can be
proven to be syngenetic and shown to be associated with other
possible biosignatures, such as in the case of the Nuvvuagittuq
jasper-carbonate BIF (Dodd et al., 2017). In this instance the crys-
talline structure of the graphite is consistent with a syngenetic
origin, unlike PCG (Fig. 4; Supplementary Fig. 1), and the apatite
in which it sometimes occurs forms large euhedral laths, consis-
tent with prograde apatite (Nutman, 2007). Therefore, in this case
the apatite 4+ graphite + carbonate association fits best with an
origin from biomass remineralisation, as can be inferred for the
Dales gorge BIF and those younger.

The new results presented here show fluid-deposited graphite
is commonly associated with apatite in Earth’s oldest sedimen-
tary rocks, and therefore evidence for life’s emergence on Earth
rests in part on the identification of fluid-deposited and syngenetic
graphite. The work here suggests that fluid-deposited carbon is
partly sourced from syngenetic organic matter, the origin of which
could either be pre-biotic or the remains of Earth’s first lifeforms.
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