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• This optimization scheme of determin-
ing the orientation relationship pos-
sesses a high accuracy with an error
less than 1°, which was examined by
the in-situ EBSD test.
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culation efficiency was realized by this
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dom cross-sections on the actual
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Without sacrificing any solution accuracy, an efficient optimization scheme of determining the orientation rela-
tionship only based on the daughter phase (i.e., lath martensite in steels in this paper) was established in this
work, which involves two key steps. Firstly, an accurate clustering algorithmwas developed to perform a statistic
of all variants, which can give themost probable orientation and area fraction for each variant. Different frompre-
viousmethods, the second step is to perform a newly-established optimization scheme,which is able to take var-
iant fractions into consideration to determine the optimal orientation relationship and orientation of prior
austenite simultaneously. In this case, the variant-level calculation, which can save much computational time
compared with pixel/domain-level calculation, is beneficial for the efficiency promotion. Through inputting the
equally-weighted variants into the optimization scheme, the influence of the random cross-sections on the solu-
tions can be effectively eliminated. Furthermore, in-situ high temperature EBSD examinations were first per-
formed to validate solution accuracy, the corresponding results clearly indicated that the orientation of
austenite obtained from this approach exhibited a high accuracy and the error is less than 1°.
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1. Introduction

Among martensitic family, the lath martensite, which is formed in
low carbon and low alloy steels, becomes the most preferred one in in-
dustrial applications due to its outstanding strength-toughness
matching [1]. In fact, the excellent mechanical properties of lath
martensite associated with its hierarchical configuration can be well-
explained by the crystallographic theory which indicates that the mini-
mum transformation strain plays a significant role [2]. However, the ori-
entation relationship (OR) between prior austenite and lathmartensite,
as oneof the critical parameters in crystallographic theory [3], is difficult
to be measured accurately and conveniently by electron backscattering
diffraction (EBSD) or even transmission electron microscopy (TEM)
techniquewhen the retained austenite can be foundhardly in specimen.
It includes two aspects. Firstly, some full-martensite steels contain
hardly any retained austenite, which makes the characterization diffi-
cult [4,5]; Secondly, even if there is detectable amount of retained aus-
tenite in specimen, the serious strain due to martensitic
transformation can cause the orientation deviation of untransformed
austenite from the initial state [6], resulting in the unreliability of the
OR measured from the EBSD or TEM examination after transformation.

To resolve these characterization problems, many methods are pro-
posed to determine the OR only based on the martensitic variants
within a prior austenite grain (PAG). An alternative method is to com-
pare the well-documented ORs (e.g., K-S [7], N-W [8] or G-T relation
[9,10]) with the measured one using stereographic projections on
which the high-indexed directions are plotted [4,5]. Another automatic
methodwas successfully applied in some cases [11−13]. It employs the
well-documented ORs to calculate the “summation of mutual misorien-
tation angle (SMMA)”with respect to each set of potential parent orien-
tations, then the most probable OR and the parent orientation are
determined with a minimum of SMMA. This method does not need
any retained austenite and is sensitive to different ORs, however it is
still semi-quantitative. Recently, several authors have proposed differ-
ent quantitative methods to deduce a representative OR based on the
EBSD data of onlymartensitic variants. Miyamoto et al. [6,14] presented
amethod determining both actual OR and orientation of prior austenite
(OPA) through numerical fitting of EBSD data to minimize the average
deviation betweenmeasured and predicted data of martensitic orienta-
tion. Although the criterion of minimization is quite reasonable, the
least squares fitting method which they used is hard to obtain the opti-
mal solution without numerical calculations. Later, Humbert et al. [15]
proposed an analytical method with the advantage of rapid solution
by introducing the quaternion algorithm into the procedure. Based on
the Lagrange multiplier rule, this method is handled as an optimization
scheme achieving the most concentrated orientation of calculated OPA,
then the corresponding averaged OR is considered as the best represen-
tative solution. However, the definition of most concentrated orienta-
tion of calculated OPA deviates from the criterion of Miyamoto's
method. After reviewing the details of these methods, in the present
work, a robustminimization criterionwhich the variant fractions are in-
troduced into is established. Our calculation is based on the variant-
level data and thus need an ability of taking the variant proportions
into consideration which is ignored in previousmethods. And an objec-
tive function was also developed with quaternion facilities, which can
be further solved using quasi-Newton method quickly.

Before applying our new approach to determine the optimal OR and
OPA, two situations may draw attention from researchers. Since the nor-
mal EBSD is two-dimensional characterization technique, the area per-
centages of variants within the cross-section of a PAG are always not
equal. In some cases, even the number of variants which can be detected
may not reach themaximum (i.e., 24 for K-S/G-T OR and 12 for N-WOR)
[16]. Under this situation, such an influence on the calculations should be
considered. Another situation concerns on the computational efficiency,
since it is quite time-consuming if we use pixel-level information to per-
form the calculation [17]. In the previous proposals, one alternative
method is to use the averaged orientations of grains by adopting the clas-
sical grain detection algorithm [18]. However, it is inevitable that some
information will be lost during averaging, which is damageable for the
accuracy of the solutions [17]. With regard to the typical bivariant struc-
ture in lath martensite, the small misorientation between two different
variants within a block and the orientation gradient within each variant
can give rise to the result that these two variants are easily averaged into
a single domainwith a new orientation andwhich is, to some extent, not
reliable or rigorous. For instance, averaging the orientations of these two
variants with K-S or G-T OR leads to a new domainwith N-WOR. There-
fore, it seems that the previous proposals are difficult to balance the com-
putational efficiency and solution accuracy. In order to escape from this
dilemma, an available way is to perform a statistic of variants within
each PAG before carrying out the optimization calculation of both OR
and OPA. Since the number of variants is less than that of domains or
pixels, the optimization calculation based on the variant-level consumes
much less computational time. In the meantime, an appropriate method
for variant statistics can also avoid any loss of orientation information ef-
fectively. In this work, the K-means clustering algorithm, as a basic algo-
rithm of machine learning [19], is modified and employed to determine
the orientation of each variant which is further applied to the area statis-
tics of all variants. In addition, this new statistical method is also
promising to be applied in the analysis of variant selection, which
can provide the higher reliability than previous convenient method
[20] relying on the well-documented ORs.

Although many different methods to determine the optimal OR and
OPAwere proposed, how to evaluate the accuracy of solutions is still an
important and challenging issue. The previous works expected to eval-
uate it through the retained austenite [21], however, the disadvantages
are still obvious, such as the orientation deviation of prior austenite
caused by strain accommodation during martensitic transformation
[6]. The present study intends to provide a more convincible and rea-
sonable tool to resolve this issue, i.e., to compare the calculated solu-
tions with the actual OPA (above MS temperature) obtained by in-situ
high temperature (HT) EBSD examination. As far as the present authors
are aware, the similar experimental verification has not been published
by now. Besides that, based on the orientation change of prior austenite,
the shear strain of retained austenite suffered from the surrounding
martensite can be also estimated, which serves as an important param-
eter in the crystallographic theory of martensitic transformation.

2. Experimental procedures

A steel plate with a chemical composition Fe-12.75%Ni-1.518%Si-
0.216%C (wt.%) was homogenized at 1473 K for 3 h, followed by water
quenching to obtain the full lath martensite microstructure. Specimens
cut from plate were mechanically grinded with SiC grid papers to re-
move the potential decarburization layer and then subjected to
electropolishing process in a mixture solution of 7% perchloric acid
and 93% ethanol at 243 K for 90 s to remove the possible damage
layer at surface caused by themechanical grinding. Then the EBSDmea-
surements with a step size of 200 nm were performed using a SEM
(LYRA3 GMU, TESCAN) equipped with an AZtecHKL EBSD system
operated at 20 kV.

In order to evaluate the solution accuracy of present approach, an in-
situ HT EBSD examination at elevated temperatureswas also performed
on other specimens with the same preparation procedure mentioned
above. The specimen was firstly heated in the hot stage (Murano 525
with USB temperature controller, Gatan) to 750 °C and hold for 1.5 h
to obtain the full-austenite microstructure, because Ac3 temperature of
this steel is 688 °C. To avoid the effect of thermal radiation on the
EBSD test, the specimen cooled down to a lower temperature of
320 °C which is still higher than the MS temperature of 225 °C to per-
form the HT EBSD examination. After that, the specimen was naturally
cooled in the hot stage to room temperature, and the in-situ HT EBSD
examination was performed again at the same position.

94875
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In addition, EBSD images displayed in this paper were created with
HKL Channel5 EBSD software or matlab2018a software by programing.
The MTEX 5.1.1 software [22] and PTClab software [23] were employed
to plot pole figures (PFs). Moreover, a threshold value for the mean an-
gular deviation (MAD) representing the fit goodness of the solution less
than 0.8° was employed to avoid noise and “artificial” martensitic
variants.

3. Methodologies

3.1. Preliminary analyses

Before detailing the new approach, some preliminary analyses are
introduced firstly. Under the assumption of invariant plane strain, the
martensite has a reproducible OR with respect to the prior austenite
[24–26]. The OR between these two phases can be illustrated by the fol-
lowing equation:

Δg � SPi � gP ¼ SDj � gD ð1Þ

where superscripts P and D indicate the parent and daughter phase re-
spectively; Swith subscripts i or jmeans the ith or jth rotational symme-
try element; Δg indicates the OR associating the orientations of parent
phase (gP) with that of the daughter phase (gD). Particularly, orienta-
tions of gP and gD make the sample reference frame parallel to that of
the cubic crystals. For cubic lattice systems, the orientation of daughter
variant can be given by Eq. (2) after a simple transposition on Eq. (1):

gD ¼ SDj
� �−1

� Δg � SPi � gP ¼ SDk � Δg � SPi � gP ð2Þ

where k also means the kth rotational symmetry element. The reason
why the second equal sign is established is that the symmetric element
set with respect to cubic crystal system is closed to the inversion opera-
tion. According to this equation, it is true that: i) each symmetry element
of SiP corresponds to a specific orientation of variant, which indicates that
all potential orientations of variants can be deduced if the orientation of
parent phase is given; ii) the number of variants depends on the term of
Δg ⋅ SiP, which can only less than or equal to the number of the total sym-
metry element of parent phase (i.e., 24/24/12 for K-S/G-T/N-W OR). For
lath martensite case, three well-documented ORs and their stereo-
graphic PFs are shown in Table 1 and Fig. 1 respectively.

Among these ORs, K-S and N-W have exact low-index parallelism
between direction and plane respectively, while the G-T OR is usually
expressed by approximate match and a frequently used one has the
form with high-index relation: {111}γ//{011}α’ and <5 12 17>γ//<7
17 17>α’ [5,27]. It follows that these three sets of ORs are related by a
rotation less than 5.26° about the normal of {111}γ//{110}α’ plane, indi-
cating the quite similar ORs. Nevertheless, a pronounced distinction can
be observed through {001}γ standard stereographic projections on
which the high-index directions of martensite are plotted.
Table 1
The orientation relationship matrix between prior austenite and martensite.

Name OR Orientation relationship matrix

K-S [7] {111}γ//{110}α’
〈110〉γ//〈111〉α’

0:7416 ‐0:6667 ‐0:0749
0:6498 0:7416 ‐0:1667
0:1667 0:0749 0:9832

0B@
1CA

111ð Þγ== 011ð Þα’
‐101½ �γ== ‐1‐11½ �α’

N-W
[8]

{111}γ//{110}α’
〈112〉γ//〈110〉α’

0:7071 ‐0:7071 0
0:6969 0:6969 ‐0:1691
0:1196 0:1196 0:9856

0B@
1CA

111ð Þγ== 011ð Þα’
‐1‐12½ �γ== 0‐11½ �α’

G-T
[5,27]

{111}γ//{110}α’
<5 12
17>γ//<7 17
17>α’

0:7266 ‐0:6859 ‐0:0407
0:6716 0:7215 ‐0:1684
0:1449 0:095 0:9849

0B@
1CA

111ð Þγ== 011ð Þα’
‐12‐5 17½ �γ== ‐7‐17 17½ �α’
Furthermore, given the orientation of daughter phase, the orienta-
tion of parent phase can be deduced by Eq. (3):

gP ¼ Δg � SPi
� �−1

� SDj � gD ¼ SPl � Δgð Þ−1 � SDj � gD ð3Þ

where lalsomeans the lth rotational symmetryelement. Letusreviewthe
ideal situationwhere the standard K-S, N-W and G-T ORs are taken into
consideration. There are 24 distinct OPA with respect to both K-S and
G-T OR, but the number is reduced to 12 for N-WOR in that half of them
are repetitive due to the particularity of N-WOR.Moreover, it should be
clear that only one variant is not enough to obtain the unique solution of
OPA, butwe canfindtheir intersectionof potential sets ofOPA calculated
fromtwodistinct variants to get access to the authenticOPA.Referring to
the previous variant labels [27–29], Table 2 lists the potential OPA de-
duced from the orientations of arbitrary two variants in the case of K-S,
N-Wand G-TORs respectively, wherematrix gP0 indicates the authentic
OPA, and the other potential OPA can be represented by (T ⋅ gP0).

Apparently, there exist some limited combinations of two distinct
variants that can determine the authentic OPA. Besides, the matrix T1
is a reflection operation about (111)γ plane superimposed with an in-
version operation, it follows that the OPA deduced from all variants
from a packet (for K-S/G-T/N-W ORs) should have two solutions with
mirror symmetry (the inversion operation is not considered because it
is one of the symmetry operations with respect to the cubic lattice sys-
tem). As shown in Fig. 1d, the PAG and its twin have six variants which
have the same orientations. Accordingly, if variants are selected ran-
domly, the minimum number that is sufficient to determine authentic
OPA is 7, 7 and 4 for K-S, G-T and N-W OR respectively. However, the
number can be reduced to 3, 2 and 3 if variants are selected from differ-
ent packets. Furthermore, variants within a PAG can be divided into
three Bain groups, and misorientation between any two variants in
the same Bain group is within ~15°. Due to high orientation scatter in
themeasured data, such small misorientation leads to a difficulty in dis-
criminating the potential OPAs of variants from the same Bain group. To
improve the accuracy of initial OPA, it is recommended that three differ-
ent variants from different Bain groups in different packets together
serve as the necessary candidates.

When it comes to the practical measurements, authentic OPAs de-
duced from different variants cannot match perfectly since the orienta-
tion scatter of variants always leads to deviations from the ideal
orientation (e.g., Fig. 3b), which therefore needs special consideration.
In fact, such a situation can be divided into two cases described in the
following section, depending on whether the OR can be approximately
estimated.

3.2. Pre-approximated OR and OPA

Case 1: the OR can be approximately estimated.
For lath martensite, the OR can always be estimated through com-

paring the measured stereographic projection with the well-
documented ORs. Given the approximated OR, all potential OPAs can
be deduced from Eq. (3). Indeed, according to the analysis from
Table 2, a schematic diagram (see Fig. 2) illustrates that the authentic
OPA needs to satisfy two conditions: 1) the cluster of potential OPAs
has the highest orientation intensity, and 2) the number of potential
OPAs of cluster is equal to that of the involved variants.

Based on the pre-analysis mentioned above, a simple algorithm is
developed to approximate the authentic OPA, which is given by the
following procedures:

(i) Any three different variants from different Bain groups respec-
tively are selected out. This can be achieved by the criterion
that the misorientation between any two of them is about 60°.

(ii) 72 (=24 × 3) potential OPAs can be obtained according to
Eq. (3). And then, check whether there are three OPAs satisfying
a condition that the misorientation between any two of them is



Fig. 1. Standard {001}α’ pole figures (PFs) for variants with K-S (a), G-T (b) and N-W (e) ORs and {011}α’ PFs for variants with K-S (c), G-T (d), where the poles of variants with the same
color or the same shape indicate the same packet group or the same Bain group respectively. (f) A prior austenite grain and its twin have six variants with common orientationmarked as
red stars, taking G-T OR as an example.
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less than a critical value, where 10° is recommended since the
growth of martensite single crystal cannot be hindered by
small angle boundary effectively. If it does, the averaged orienta-
tion of these three potential OPAs can be presented as the
orientation of this cluster which can be further treated as the
approximated OPA.

(iii) However, there may be more than one cluster in practical
measurement. For these three OPAs of a cluster whose



Table 2
Potential OPA deduced from the orientations of two distinct variants with K-S, N-W or G-T ORs respectively.

Variant pair K-S OR G-T OR N-W OR

V1/V2 gP0; T1∙gP0; T2∙gP0; T3∙gP0; T4∙gP0 gP0; T1∙gP0 gP0; T1∙gP0

V1/V3 gP0; T1∙gP0; T5∙gP0; T6∙gP0 gP0; T1∙gP0; T7∙gP0; T8∙gP0 gP0; T1∙gP0

V1/V4 gP0; T1∙gP0 gP0; T1∙gP0 gP0; T9∙gP0

V1/V5 gP0; T1∙gP0; T5∙gP0 gP0; T1∙gP0; T7∙gP0; T8∙gP0 gP0

V1/V6 gP0; T1∙gP0 gP0; T1∙gP0

V1/V7 gP0; T3∙gP0; T4∙gP0 gP0

V1/V8 gP0; T3∙gP0; T4∙gP0

V1/V9 gP0

V1/V10
V1/V11
V1/V12
V1/V13 –
V1/V14
V1/V15
V1/V16
V1/V17
V1/V18
V1/V19
V1/V20
V1/V21
V1/V22
V1/V23
V1/V24
Remarks

T1 ¼
‐0:3333 0:6667 0:6667
0:6667 ‐0:3333 0:6667
0:6667 0:6667 ‐0:3333

0B@
1CA T2 ¼

‐0:9916 ‐0:1292 0:0084
‐0:1292 0:9832 ‐0:1292
0:0084 ‐0:1292 ‐0:9916

0B@
1CA T3 ¼

0:2500 0:6124 ‐0:7500
‐0:6124 ‐0:5000 ‐0:6124
‐0:7500 0:6124 0:2500

0B@
1CA

T4 ¼
0:2500 ‐0:6124 ‐0:7500
0:6124 ‐0:5000 0:6124
‐0:7500 ‐0:6124 0:2500

0B@
1CA T5 ¼

0:0999 ‐0:9888 ‐0:1111
‐0:9888 ‐0:1111 0:0999
‐0:1111 0:0999 ‐0:9888

0B@
1CA T6 ¼

‐0:7666 0:3221 ‐0:5556
0:3221 ‐0:5556 ‐0:7666
‐0:5556 ‐0:7666 0:3221

0B@
1CA

T7 ¼
0:0559 ‐0:9967 ‐0:0592
‐0:9967 ‐0:0592 0:0559
‐0:0592 0:0559 ‐0:9967

0B@
1CA T8 ¼

‐0:7226 0:3300 ‐0:6074
0:3300 ‐0:6074 ‐0:7226
‐0:6074 ‐0:7226 0:3300

0B@
1CA T9 ¼

0 0:7071 0:7071
‐0:7071 0:5000 ‐0:5000
‐0:7071 ‐0:5000 0:5000

0B@
1CA
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orientations are expressed by quaternions, the norm of the
sum of those quaternions can be estimated as the intensity
of this cluster [15]. And the cluster with the highest intensity
is treated as the optimal solution.

Case 2: no information about the OR.
Fig. 2. The schematic diagram (adapted from Ref. [21]) illustrating the difference between
the authentic orientation of prior austenite (OPA) and the other OPAs. P equals to the
number of potential OPAs in a cluster over the number of variants involved.
When it comes to a special situation that the OR cannot be easily es-
timated, a method named by its creators Humbert et al. [30], XABX, is
available. In thismethod, an error functionwhich represents themisori-
entation between three potential OPAs to some extent is developed.
With the only input of orientations of two variants within a PAG, an an-
alytical solution is provided to minimize the error function. In order to
match the notations and formulas in the present paper, a slightly mod-
ified version is briefly illustrated in the Appendix A, while the detailed
description can be referred to Ref. [30].

Although the XABXmethod only uses the orientations of variants as
the known condition without any information about the OR, it is still
regarded as an approximatemethod. The reasons include: i) the propor-
tion of variants on the optimal OR is not taken into account; ii) this
method is established with a hypothesis that the OPAs do not vary
with respect to different variants taken into calculation. Apparently, it
is not easy to realize since the boundaries with small angles always
exist in many practical cases; iii) Instead of all variants, the OR calcula-
tion involves only three neighboring ones within a PAG.

Based on the above summary of previous achievements, both OPA
and OR can be roughly estimated. However, the OR is not only an essen-
tial parameter in the crystallographic theory, but also can have an influ-
ence on the mechanical properties. It follows that an accurate
measurement of OR is required and of significance, and as shown in
the following sections, our new approach is developed for this purpose.
3.3. Crystallographic statistics of variants

As we know, the specific OR is rarely maintained strictly within a
PAG [31], a slight OR deviation usually occurs at different positions. In
practical two-dimensional EBSD measurements, the area fractions of
different variants vary greatly even in the un-deformed PAG. However,
there is no reason for variant selection during the martensitic transfor-
mation in naturally quenched specimens. Therefore, the area factor



6 D. Sun et al. / Materials and Design 195 (2020) 109022
needs to be eliminated when performing the calculation for optimal OR
and OPA, which can be realized by carrying out the variant statistic in
advance.

Clustering is a machine learning technique that involves the group-
ing of data points. In the present section, the K-means clustering algo-
rithm is modified and employed to the variant statistic, and
quaternions are used to perform the algorithm. Correspondingly, the
conversion formulas between rotation matrix and quaternion are listed
in the Appendix B.

(i) The number of clusters (i.e., the value of K) is determined at first.
According to the approximated OR, this number should be 24 in
almost all cases with respect to lath martensite because only
strict N-W OR can have 12 variants.

(ii) The centers of clusters should be initialized. Given the approxi-
mated OR and OPA, the orientation of variants can be obtained
by Eq. (2), which can serve as the initial centers of clusters.

(iii) Each pixel data is classified by calculating the misorientation be-
tween this pixel and each center of clusters, and then classifying
the pixel into the clusterwhose center is the closest to it. Further-
more, a pixel whose orientation differs by more than a threshold
value (10° in this paper) from that of the closest center of clusters
will not be grouped into any clusters, this extra modification on
the K-means clustering algorithm is to estimate the number of
variants.
In this step, two essential calculations are involved. One is that
the rotation angle with respect to a quaternion of Q can be ob-
tained by 2arccos(Q [1]) where Q [1] is the first component of
Q. The other is the misorientation calculation, which involves
the quaternion multiplication. According to the multiplication
rules [32], the P·Q representing a product of unit quaternions
P = [p0,p1,p2,p3]T and Q = [q0,q1,q2,q3]T can be alternatively
expressed by L(P)·Q or R(Q)·P, where L(P) and R(Q) transform
the quaternion form of P and Q into the matrix form:

L Pð Þ ¼
p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

2664
3775 ð4� 1Þ

R Qð Þ ¼
q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

2664
3775 ð4� 2Þ

(iv) The center of each cluster is replaced by the averaged orientation
of these classified pixels, and the averaged orientation from N
pixels is given by the following Eq. [33]:

Qave ¼
XN
i¼1

Qi=
XN
i¼1

Qi

�����
����� i ¼ 1;2;3;…Nð Þ ð5Þ

where Qi indicates the quaternion of the orientation of the ith pixel data.
One should be aware of that a three-dimensional rotation is represented
by two opposite quaternions, and only the appropriate one (i.e., the ori-
entation quaternions should have a same direction) should be selected
during this averaging calculation.

(v) Repeat above steps until the centers of clusters barely change be-
tween two successive iterations. Here, the convergence criterion
is that the misorientation of every cluster center between two
successive iterations is less than 0.01°. After finishing the conver-
gence, if there is any cluster which almost no pixels are grouped
into, the value where K subtracts the number of the empty
cluster stands for the number of variants.

After clustering, the area fraction of variants can be estimated
through the number of pixels in every cluster since each pixel has the
same area. Furthermore, the crystallographic statistics of variants
allow the variant-level optimization of OR and OPA which can save
computational time significantly because the number of variants is
much lower than that of pixels or domains.

3.4. A robust optimization scheme for OR and OPA

Different from the previous method, the present solution of OR and
OPA with consideration of the variant proportions is treated as an opti-
mization scheme and can be solved by BFGS quasi-Newton algorithm
[34] quickly. Firstly, an objective function needs to be built. After a sim-
ple transposition on Eq. (1), an orientation deviation between the
measured and the predicted variants can be established:

Dm ¼ SDj � gDm
h i

� fΔg−1 � SPi �fgP−1
� �

ð6Þ

where the subscriptm indicates themth variant,eΔg andegP represent the
predictedOR and parent orientation respectively. Before performing the
new algorithm, if the symmetric elements of daughter and parent
phases can be determined in advance, a large amount of computation
costs can be saved. Fortunately, after substituting the inverse of the ap-
proximated OR and OPA foreΔg−1 andegP−1 respectively, it can be
achievedwhen the rotation angle with respect toD reaches aminimum
value.

Due to the quaternion facilities, it is beneficial to transform Eq. (6)
into quaternion form:

QDm
¼ QSDj

� QgDm

h i
� QΔg−1 � QSPi

� QgP−1

h i
ð7Þ

Thanks to these two equivalent multiplications as shown in Eq. (4),
the quaternion multiplication can be transformed into matrix form as
shown in the following:

QDm
¼ L L QSDj

� QgDm

� �
� R QSPi

� �
� QΔg−1

� �
� QgP−1 ð8Þ

where the predictedQeΔg−1 andQegP−1 can be given by two undetermined

quaternions
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x12−x22−x32

p
, x1, x2, x3

h i
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−x42−x52−x62
p

, x4, x5, x6
h i

respectively whose first components

implicates the constrain of unit quaternions. Besides that, due to the
flexibility of equivalent multiplications, Eq. (8) gives only one form of
the orientation deviations.

Finally, the objective function is specified by:

min
XNv

m¼1

f m � arccos QDm
1½ ��� ��	 
 !

ð9Þ

where Nv is the number of variants, fm is the fraction of themth variant,
and QDm

[1] indicates the first component of QDm
. In order to minimize

the objective function given by Eq. (8) and (9), the current solution
can be quickly solved by BFGS quasi-Newton method with inputting
the initial value of QeΔg−1 and QegP−1 which the inverse of the approxi-
mated OR and OPA can respectively serve as.

Based on the optimal orientation of each variant after a clustering
statistic, the new robust algorithm, which is viewed as an optimization
scheme taking the proportion of variants into consideration, differs
greatly from previous attempts proposed by other authors.



Fig. 3. The EBSDmaps of the full martensite microstructure and its stereographic pole figures within a prior austenite grain. (a) Inverse pole figure (IPF)map of lath martensite; (b) {001}
pole figure of lath martensite displayed as points; (c) Phase map of iron BCC and FCC, indicating no retained austenite; (d) {011} pole figure of lath martensite displayed as a contour.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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4. Results

4.1. Application to a full-martensite microstructure at room temperature

Following the algorithm developed above, the new approach to de-
termine the optimal OR and OPA was applied to a steel with full-
martensite microstructure at first.

A typical microstructure of full martensite is presented in Fig. 3a,
which contains almost no retained austenite as shown in Fig. 3c. This
is exactly the situation where the OR is difficult to be measured by the
traditional EBSD technique but is available by the present approach.
Compared with Fig. 1 and the martensite's {001} stereographic PF
displayed as points (Fig. 3b), it is confirmed that the PAG contains 24
variants, indicating 24 clusters of variant orientations. Furthermore, in
order to test the accuracy of the variant orientations that we estimated,
a {011} stereographic PFwith higher index plotted as a contour (Fig. 3d)
is recommended since it shows the measured intensity of martensite.

In order to accelerate the convergence of clustering algorithm, the
approximated OPA and ORwere firstly employed to generate the initial
value of the variant orientations. As shown in Fig. 4a, the approximated
orientations of variants and the measured data do not match well. After
transforming the orientation data into quaternion form, themodified K-
means clustering algorithm was performed successfully. The desired
convergence was quickly achieved with only 5 iterations, and the clus-
tering results for each iteration are also provided in Supplementary
Movie S1. It is clear that the variant orientation with respect to the con-
verged results is almost perfect in accordancewith themeasured data as
shown in Fig. 4b, indicating a high accuracy of this algorithm.

Based on the orientations of variants with respect to the converged
and approximated results, the percentage of every variant was further
calculated as shown in Table 3. When the converged result serves as
the true value, the relative error of the approximated result varies
from zero to a maximum value of 30.78%, indicating that the clustering
algorithm is necessary to improve accuracy significantly. The image dis-
tribution of variants within the PAG are visualized in Fig. 5. It is a typical
three-tier hierarchical configuration, where a PAG is composed of four
crystallographically distinct packets, each of which consists of three
blocks that exhibit a bivariant structure with V1/V4 pairs. This is consis-
tent with previous studies on lath martensite [4,35]. From these results,
the additional benefits of high accuracy from the present approach can
even be extended to the identification of variant selection more easily
during stress/strain induced martensitic transformation.

After obtaining themost representative orientations of variants with
their area percentages, the robust algorithm of calculating the optimal
OR and OPA was further performed by considering the proportions of
variants (both area-weighted and equally-weighted), and the results
are listed in Table 4. Here, the criterion judging the accuracy of solutions
is specified by the following equation,which is similarwith the criterion
proposed by Miyamoto [6,14]:

XNv

m¼1

f m � Δθm ð10Þ

whereΔθm is the deviation between themeasured and predicted data of
themth orientation of variant. Besides, the variant fraction, fm, equals to
1/Nv for the equally-weighted case. For comparison, the variant orienta-
tion after clustering was also inputted into Humbert's method in Ref.
[15], whose solution is also listed in Table 4. Apparently, the deviation
of our solution is smaller, which indicates the better accuracy. In addi-
tion, there are only small misorientations between the optimal results



Fig. 4. The contoured {011} pole figure of lath martensite within the prior austenite grain
in Fig. 3a superimposedonto the {011} polefigure of the calculated orientations of variants
during the clustering. (a) and (b) show the first and the last iteration respectively.
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(i.e., OR and OPA) solved by our and Humbert's approaches. Neverthe-
less, as is well known that the OR plays an essential role in the crystallo-
graphic theory, a small change in OR may imply a different mechanism
of martensitic transformation [2,24], which thus deserves a rigorous
treatment. Furthermore, as analyzed above, the optimal OR with equal
area-weighted variants should be the solution for the present study, al-
thoughwhose deviation is slightly larger. This OR differs fromG-T, N-W
and K-S ORs by 1.63°, 2.45° and 3.54° respectively, suggesting that the
G-T is the nearest OR in the specimen, and the angles between close-
packed planes and close-packed directions are 1.39° and 3.29°
respectively.
Table 3
The area percentage of variants with respect to the converged result (CR) and
approximated result (AR) and the corresponding relative error.

Packet 1 Variant V1 V2 V3 V4 V5 V6
Area Percentage (%) CR 0.41 2.11 0.43 0.14 1.87 1.99

AR 0.41 1.80 0.52 0.14 2.15 1.90
Relative error (%) 0.00 14.65 20.54 0.00 15.32 4.45

Packet 2 Variant V7 V8 V9 V10 V11 V12
Area Percentage (%) CR 12.26 1.08 6.40 10.96 1.57 9.73

AR 12.24 1.05 6.63 10.82 1.61 9.60
Relative error (%) 0.19 2.80 3.67 1.25 1.92 1.41

Packet 3 Variant V13 V14 V15 V16 V17 V18
Area Percentage (%) CR 5.10 1.44 3.50 9.34 0.80 4.72

AR 5.69 1.35 3.71 8.75 0.89 4.69
Relative error (%) 11.58 5.83 5.98 6.32 10.12 0.74

Packet 4 Variant V19 V20 V21 V22 V23 V24
Area Percentage (%) CR 3.61 1.64 3.13 15.00 1.04 1.71

AR 4.72 1.57 3.15 13.79 1.12 1.69
Relative error (%) 30.78 4.24 0.60 8.05 7.61 1.09
To verify the reliability of the solution further, the PAG was recon-
structed based on a simple algorithm described in Appendix C as well,
and the corresponding results are presented in Fig. 6. The stereographic
PF of the reconstructed prior austenite (Fig. 6d) shows a good fitting
with that of the measured variants (Fig. 6b), which indicates that the
OR and OPA determined by the present approach are accurate and
may be even propitious to the reconstruction of PAGs.

5. In-situ HT EBSD examination

In order to provide a relatively convincible examination to assess the
solution accuracy, an in-situ HT EBSD analysis was performed to obtain
the crystallographic data of prior austenite before martensitic
transformation.

As presented in Fig. 7a, three austenite grains with a triple junction
was observed at 320 °C (above MS temperature). While Fig. 7b and c
shows the in-situ image at room temperature after specimen was
cooled down naturally in the SEM chamber. There is a small amount
of retained austenite dispersed among martensitic variants in each
PAG. Furthermore, the stereographic PF of martensite within the first
PAG labeled in Fig. 7c is also presented in Fig. 7d. The orientation scatter
of variants is pronounced compared to those in the water-quenched
specimen shown in above figures, which may bring challenges to the
clustering procedure. Here, the averaged orientation of austenite grain
at 320 °C will be the evaluation criterion for our calculated solution
(i.e., OPA), while the orientation of retained austenite will be employed
as a comparative data for illustrating the accuracy of our approach
further.

After performing the clustering algorithm, the orientations of vari-
ants calculated show a good agreement with that of the experimental
data, as revealed in the stereographic PF of martensite where the PF of
the clustered variant orientations are superimposed (Fig. 8a). In addi-
tion, the area statistic of variants is also provided in Fig. 8b, which will
be employed to the optimization scheme for OR and OPA.

Based on the clustered orientation of variantswith their correspond-
ing area percentages, the robust optimization scheme for OR and OPA
was carried out. With respect to the first austenite grain, Table 5
shows that the OPA obtained from the present approach, no matter
whether the area-weighted or the equally-weighted factor is involved,
has a good agreement with the averaged austenite orientation obtained
at 320 °C (with a misorientation less than 1°). However, the averaged
orientation of all retained austenite within the first grain shows a mis-
orientation of 1.43°, and this number will be even as large as 3.73°
when averaging the misorientations between the austenite orientation
at each pixel and the initial averaged orientation. This orientation
change may be an inevitable result of the strain accommodation due
to martensitic transformation, which leads to the unreliability when
employing the retained austenite to serve as the prior austenite at ele-
vated temperature. Therefore, the solution obtained by the present ap-
proach exhibits an even higher accuracy than using the orientation of
retained austenite.

In addition, the method developed by Humbert et al. [15] was not
suitable for dealing with this case because several eigenvalues of the
matrix ATA (which is given in Ref. [15]) have the relatively high similar-
ity, which may be caused by the orientation scatter of variants. There-
fore, our approach is more robust, and it is believed that a higher
solution accuracy can be achieved with respect to the water-quenched
microstructure, since a much less orientation scatter of variants is ob-
served compared to the specimen natural-cooled in the SEM chamber.

6. Discussions

Due to the small difference among the well-documented ORs
(e.g., 2.4° between K-S and G-T relations), there arises a requirement
for an accurate and quantitative method to determine the OR between
prior austenite and martensite. However, the situation where scarcely



Fig. 5. The colored variants showing the blocks with bivariant structure from four crystallographically distinct packets within the prior austenite grain.
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retained austenite can be detected constitutes a major obstacle to get-
ting access to the actual ORwhen it comes to the full lathmartensitemi-
crostructure. Moreover, even if only a little amount of austenite is
retained in the specimen, the orientation of retained austenite always
has a deviation from its initial state above MS temperature, which is
caused by the strain accommodation duringmartensitic transformation.
Fortunately, according to the crystallographic theory of martensitic
transformation, there is always a reproducible OR for a martensitic
steel with a specific composition, which is subject to the mechanism
of invariant plane strain. It follows that we can take advantage of it to
deduce the OR and OPA by a sufficient number of variants.

In this new approach, the modified K-means clustering algorithm is
firstly applied to determine the orientations of variants with their area
percentages. Although it seems like an extra calculation, advantages
are still obvious: (1) When it comes to the case where there is no con-
dition for variant selection (e.g., the present study), the different area
percentages of variants from two-dimensional EBSD analysis is proba-
bly caused by a random cross-section of a PAG. It may be, therefore,
more reasonable to apply the equally-weighted variants to the optimi-
zation scheme of OR and OPA. As shown in the stereographic PFs in
Fig. 4 and 8a, the converged variant orientations after clustering indi-
cates a good fit to the experimental data, which therefore is highly rep-
resentative for the measured data; (2) With respect to the case of
variant selection, the present optimization scheme can also consider
the area-weighted case through a simple area statistic based on the con-
verged variant orientations. Particularly, due to the good agreement
with the measured data, the solution from clustering algorithm shows
Table 4
The solutions of OR and OPA from different methods and the corresponding deviations.

Method OR

Area-weighted [0.9229,−0.0606,0.0464,−0.3775]T

Equally-weighted [0.9234,−0.0624,0.0453,−0.3760]T

Humbert's method [0.9233,−0.0617,0.0454,−0.3764]T
a higher accuracy than that fromprevious approach [20]which employs
thewell-documented ORs, such as K-S OR, to estimate the orientation of
variants. It follows that the clustering algorithm has a promising appli-
cation for the analysis of variant selection; (3) Computational time can
be saved significantly through applying the converged variant orienta-
tions to the present optimization scheme, since the variant-level data
has a prominent advantage in the computation costs compared with
the pixel-level data. In addition, although the domain-level calculation
is also adopted to save computational time, the accurate orientation in-
formation is always lost during the averaging especially for lath mar-
tensite steel whose misorientation of V1/V4 is only about 5° [5]. While
the variant-level calculation based on the clustering algorithm not
only has the highest computational efficiency but also can ensure the
accurate information of variant orientations.

In order to obtain the OPA and OR using the variant-level data, a ro-
bust optimization scheme is developed. As employed by Beladi [11–13]
et al., the criterion of minimizing the SMMA is quite reasonable, and an-
other similar criterion requiring aminimization of the average deviation
between measured and predicted data of martensitic orientation was
also proposed by Miyamoto [6,14]. However, the fraction of variants
serves as an essential role in the variant-level calculation is not involved
in their minimization criterion. Following their criterion, an objective
function is built in our approach through introducing the variant frac-
tion into Miyamoto's criterion as shown in Eq. (9). Besides that, thanks
to the facilities of quaternion, the objective function established using
quaternion can be quickly solved by the BFGS quasi-Newton method.
As demonstrated above, the least squares fitting method used by
OPA
∑
Nv

m¼1
f m⋅Δθm

[0.6812,0.4536,0.2264,0.5281]T 0.4261
[0.6815,0.4534,0.2270,0.5277]T 0.5461
[0.6816,0.4530,0.2267,0.5280]T 0.5558



Fig. 6. Eulermap of reconstructed prior austenite (a) with {001} stereographic pole figures displayed as points (c) and a contour (d); {001} stereographic polefigures of the corresponding
lath martensite displayed as a contour (b).

10 D. Sun et al. / Materials and Design 195 (2020) 109022
Miyamoto is hard to obtain the optimal solutionwithout numerical cal-
culations [14,30]. It follows that this new approach exhibits a faster cal-
culation speed with equivalent accuracy. Furthermore, although an
analytical approach developed by Humbert [15] has the advantage of
rapid solution, the solutions from this method cannot always satisfy
theminimization criterion in the present study, indicating the lower ac-
curacy as shown in Table 5. Therefore, the high accuracy and efficiency
together with an ability of taking variant fraction into consideration are
the main merits of this new approach. Recently, there is an increasing
attention on the reconstruction of PAGs especially for the ausformed
martensite [36–40]. In fact, our new optimization scheme can also be
propitious to the reconstruction technique due to the high accuracy
and efficiency.

In previous researches, perhaps due to the technology limitation, the
solution accuracy was evaluated and verified only based on the experi-
mental data obtained from the retained austenite. Since retained aus-
tenite is deformed seriously, it may not be a reliable measurement
object. Fortunately, such a crucial difficulty has been overcome in our
work by using in-situ HT EBSD examinations. Without the interference
of deformation, the orientation datameasured fromuntransformed aus-
tenite at high temperature supports our calculation results strongly.
That is, our theoretical model has a high accuracy with an error of as
low as less than 1°. As we know, the retained austenite undergoes an
orientation change after suffering from the transformation strain by
the surrounding martensite. Such a deformation induced by transfor-
mation can be presented by the kernel average misorientation (KAM)
maps recorded at different temperature as shown in Fig. 9. In this
case, a higher local misorientation of retained austenite was observed,
indicating a larger strain gradient [41]. In fact, as shown in Table 5, the
averaged orientation of retained austenite varies from the initial
averaged orientation about 1.43°, and the angle becomes even to 3.73°
indicated from Fig. 10 when averaging the misorientations between
the austenite orientation at each pixel and the initial averaged
orientation.

Asmentioned above, our new approachwill come in handywhen no
or only a little amount of retained austenite can be observed. In fact, the
reason for this phenomenon can be related with the self-
accommodation of variants and the hierarchical configuration of lath
martensite as displayed in Fig. 5. Recently, Kinney et al. [4] drew a con-
clusion from a commercial 9 Ni steel that the bivariant blocks (V1/V4
pair) with the invariant planes of {011}α’//{111}γ can be mutually
stacked to form a packet without significant internal strain. Once the
shear strain can be eliminated effectively through the self-
accommodation of bivariant blocks, the austenite is very likely to be
fully transformed into martensite after the transformation goes to com-
pletion. Indeed, the absence of retained austenite is a commonphenom-
enon especially in nickel steels.

When there is a little amount of retained austenite, it always un-
dergoes an orientation change which may be an inevitable result of
transformation strain. From the concept of geometrically necessary dis-
locations (GND), the higher density of GND indicates the larger gradient
of plastic deformation [42,43]. Here, the spatial distribution of GNDden-
sity is employed to visualize the strain state of the austenite phase. An
approximate expression [44,45] of GND density related with local mis-
orientation angle of KAM is specified by Eq. (11):

ρGND ≈ 2θ=bd ð11Þ

where θ (rad) is the misorientation angle of KAM; b is the Burgers
vector; d is the step size.



Fig. 7. IPFmaps of prior austenite at 320 °C (a), retained austenite at room temperature (b), and lathmartensite at room temperature (c)with dashed lines indicating the PAG boundaries,
and the stereographic PF of martensite within the first PAG (d).
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According to the equation above and the data from Fig. 9, the aver-
aged GND density of austenite at 320 °C and room temperature are cal-
culated as 2.30 × 1013 m−2 and 8.96 × 1013 m−2 respectively. Such a
Fig. 8. The contoured {011} stereographic PF of martensite within the first PAG superimposed
variants after statistic (b).
significant increase in GND density indicates a more serious gradient
of plastic deformation and the possibility of orientation change at differ-
ent positions within a PAG. In addition to the gradient of plastic strain,
onto the PF of the clustered orientations of variants (a), and the area percentage of each



Table 5
The comparison among the averaged orientation of austenite at 320 °C, the OPAs obtained
from our new approach, and the averaged orientation of retained austenite at room
temperature (RT) with respect to the first PAG.

Orientation in quaternion form Misorientation with the
averaged orientation of
austenite at 320 °C (°)

Austenite at
320 °C

[0.8463,0.2690,−0.1990,−0.4146]T –

Equally-weighted
OPA

[0.8477,0.2715,−0.2019,−0.4084]T 0.8465

Area weighted
OPA

[0.8482,0.2702,−0.2007,−0.4090]T 0.7189

Retained
austenite at RT

[0.8411,0.2665,−0.2053,−0.4236]T 1.4254

Fig. 10. Histogram of the misorientation (Δθ) between the initial austenite at 320 °C and
the retained austenite at room temperature with respect to the first austenite grain.
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the plastic strain itself of retained austenite suffered from the surround-
ing martensite can be also estimated. According to Ashby's model [43],
an approximate relation between the net rotation (i.e., the misorienta-
tion of austenite before and after martensitic transformation) and the
shear strain is given as:

Δθ ≈ εγ ð12Þ

where Δθ is the net rotation (rad), εγ is the shear strain, and the equa-
tion above is only valid for small εγ (less than 0.2). Histogramof themis-
orientation (Δθ) with respect to the first PAG is shown in Fig. 10. And
the averaged shear strain derived from Eq. (12) is about 6.5%, which
can serve as an important parameter for the crystallographic theory of
Fig. 9. Kernel average misorientation (KAM) maps of prior austenite at 320 °C (a) and the re
boundaries of PAGs; Histograms of the misorientation angle from the corresponding KAM map
martensitic transformation. However, it should be noticed that the
value of 6.5% may be still underestimated due to the strain relaxation
on the surfaces. In fact, the eigen shear strain produced by the formation
of a variant is as high as about 24.2% based on the two lattice invariant
shears [28]. In turn, the surrounding austenite will undergo the rela-
tively high additional stress. It has been reported recently that disloca-
tion density in retained austenite may be nearly same as in lath
tained austenite at room temperature (b) respectively, where dashed lines indicates the
s (c).
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martensite, such as 5.56 × 1014 m−2 [46]. As a result, the serious plastic
strain accompanying with the lattice rotation would occur in retained
austenite. Instead of retained austenite at room temperature, the aus-
tenite at a temperature near theMS, due to less dislocation interference,
is a better candidate to verify the rationality of our approach.

In addition, an interesting result is found that a near G-T OR, instead
of the general K-S OR, is obtained from this new approach. it must be re-
lated with the crystallographic details during martensitic transforma-
tion. One of the notable phenomena for G-T OR is that, the
misorientation between two sub-blocks within a block is only 5.72°,
rather than the 10.53° for K-S OR. The further crystallographic details
about the relationship between OR and mechanical property is now
under way and will be reported elsewhere [47].

7. Conclusions

In order to overcome the difficulty and inaccuracy in measuring the
OR and OPAwhen there is no enough amount of retained austenite that
can be observed in lath martensitic steel at room temperature, a new
approach was proposed based on two crucial algorithms: a modified
K-means clustering of variant orientations and a robust optimization
scheme developed for OR and OPA. The water-quenched Fe-12Ni-
1.5Si-0.2C steel was selected to test the effectiveness of this approach
under the assistance of in-situ HT EBSD examinations. The following
achievements were obtained:

1. The novel approach to determine OR at room temperature excludes
the role of retained austenite completely, since a significant orien-
tation change (e.g. >3.5° in average) with respect to the prior aus-
tenite surrounded by martensite will lead to an inaccuracy of the
actual OR. The experimental verification by in-situ HT EBSD exam-
inations found that the misorientation between the OPA optimized
from the variant orientations and the actual examined one above
the MS temperature was less than 1°, indicating that the present
approach is more reliable in narrowing the margin of error for OR
research.

2. Two factors are responsible for the high solution accuracy in the
present approach. The first one is the negligible misorientation be-
tween the experimental and the clustered variants according to the
orientation comparison from the pole figure analysis, the second
one is the robust optimization schemewhich strictly satisfies the cri-
terion that aminimumaverage deviation between themeasured and
predicted orientation of variant is required. Furthermore, the
variant-level calculation, instead of pixel/domain calculation previ-
ously used, contributes to the high computational efficiency without
scarifying solution accuracy.

3. The clustering algorithm modified and the optimization scheme de-
veloped in the present paper are not only the decisive factors for
high solution accuracy, the former also have a promising application
for the analysis of variant selection, and the later can be also propi-
tious to the reconstruction of austenite grains.
Supplementary data to this article can be found online at https://doi.

org/10.1016/j.matdes.2020.109022.
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Appendix A

The XABX method [30] was designed to apply at the triple junction
between three variants for reconstructing the ausformed martensite.
And this method is developed based on two assumptions that: i) the
OPAs remains the same across the variant boundaries; ii) the local ORs
remain close to each other and thus close to a mean OR. In order to
match the notations and formulas in the present paper, the XABX
method is slightly modified.

For two variants inherited from a PAG:

gD v1ð Þ� � ¼ SDj v1ð Þ
h i

� Δg v1ð Þ½ � � SPi v1ð Þ
h i

� gP v1ð Þ� � ðA: 1� 1Þ

gD v2ð Þ� � ¼ SDj v2ð Þ
h i

� Δg v2ð Þ½ � � SPi v2ð Þ
h i

� gP v2ð Þ� � ðA: 1� 2Þ

where these two variants are represented by v1 and v2 respectively,
and the other notations are consistentwith the text above. Based on the
first assumption of [gP(v2)] = [gP(v2)], we can obtain the following
equation after simple manipulations:

gD v2ð Þ� � � gD v1ð Þ� �−1 ¼ SDj v2ð Þ
h i

� Δg v2ð Þ½ � � SPi v2ð Þ
h i� �

� SDj v1ð Þ
h i

� Δg v1ð Þ½ � � SPi v1ð Þ
h i� �−1

ðA: 2Þ

Then, with the second assumption of Δg v2ð Þ½ �≅ Δg v1ð Þ½ �≅ Δg
� �

,
Eq. (A2) can be transformed into:

gD v2ð Þ� � � gD v1ð Þ� �−1
≅ SDj v2ð Þ
h i

� Δg
� � � SPi v2ð Þ

h i� �
� SDj v1ð Þ
h i

� Δg
� � � SPi v1ð Þ

h i� �−1
ðA: 3Þ

Next, the term of SDj v2ð Þ
h i

⋅ Δg
� �

⋅ SPi v2ð Þ
h i� �

can be replaced by a new

term Δg
0h i
for simplifying the notations:

gD v2ð Þ� � � gD v1ð Þ� �−1
≅ Δg

0h i
� SDj v1ð Þ0
h i

� Δg
0h i
� SPi v1ð Þ0
h i� �−1

ðA: 4Þ

We can further reformulate the Eq. (A. 4) to a general form of

X ⋅ A ≅ B ⋅ X, where X represents Δg
0h i
, A and B are functions of the orien-

tation of variants and of rotational symmetry elements:

Δg
0h i
� SPi v1ð Þ0
h i−1

≅ gD v2ð Þ� � � gD v1ð Þ� �−1 � SDj v1ð Þ0
h i

� Δg
0h i

ðA: 5Þ

The general form of Eq. (A. 5) is where the name of XABX comes
from. In order to find an optimal OR, an error function needs be mini-
mized which is established as:

E ¼ X � A−B � Xk k2 ðA: 6Þ

with a constraint of ‖X‖2 = 1, where ‖‖ defines the Euclidean norm.
It will be very efficient to apply quaternion to resolve this minimization
problem, with a new form of QX ⋅ QA − QB ⋅ QX replacing the previous
form of X ⋅ A− B ⋅ X. With the quaternion facilities, the quaternion mul-
tiplication can be transformed into matrix form:

QX � QA−QB � QX ¼ R QAð Þ � QX−L QBð Þ � QX
¼ R QAð Þ−L QBð Þð Þ � QX ðA: 7Þ

where the conversion formulas are listed in Eq. (4). Accordingly, the
error function can be given by:

https://doi.org/10.1016/j.matdes.2020.109022
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R QAð Þ−L QBð Þð Þ � QXk k2 ¼ QX
T � R QAð Þ−L QBð Þð ÞT

� R QAð Þ−L QBð Þð Þ � QX¼ QX
T � S � QX ðA: 8Þ

The minimization of Eq. (A. 8) can solved by introducing a Lagrange
multiplier λ with a constrain of ‖QX‖2 = 1:

Min QX
T � S � QX þ λ 1−QX

T � QX

� �� �
ðA: 9Þ

A minimum of Eq. (A. 9) can be reached when the first derivative
equal to zero, which means that S ⋅ QX = λQX. Hence, we can obtain
the minimum value of the error function:

Min E QXð Þð Þ ¼ Min QX
T � S � QX

� �
¼ λ ðA: 10Þ

Accordingly, the eigenvalue λ that is closest to zero of S is retained
because it minimizes the error function, and its corresponding eigen-
vector QX determines the solution X.

Appendix B

Given a quaternion Q= [q0,q1,q2,q3]T (q0 being the real part, and q1,
q2, q3 being the imaginary part), the equivalent right-handed (pre-mul-
tiplied) 3 × 3 rotation matrix, R, is given by

R ¼
1−2q2

2−2q3
2 2q1q2−2q0q3 2q0q2 þ 2q1q3

2q1q2 þ 2q0q3 1−2q1
2−2q3

2 2q2q3−2q0q1
2q1q3−2q0q2 2q0q1 þ 2q2q3 1−2q1

2−2q2
2

24 35 ðB: 1Þ

The conversion from rotationmatrix R to quaternion Q is also given:

q0 ¼ 1þ R 1;1½ � þ R½2;2� þ R½3;3�ð Þ1=2=2
q1 ¼ R 3;2½ �−R½2;3�ð Þ=4q0
q2 ¼ R 1;3½ �−R½3;1�ð Þ=4q0
q3 ¼ R 2;1½ �−R½1;2�ð Þ=4q0

8>><>>: ðB: 2Þ

Appendix C

A simple algorithm of reconstructing a PAG is developed, which is to
calculate the OPA of each pixel. After obtaining the optimal OR andOPA,
we can first confirm the symmetric element of prior austenite and the
lath martensite according to Eq. (6)

Then substitute the optimal OR and symmetric elements into Eq. (3),
the OPA for each pixel can be determined. After that, the orientation
data of prior austenite is changed into the form of Bunge Euler angles,
which is further plotted by MTEX 5.1.1 software [22].
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